University of Swaziland

Final Examination, December 2015

B.A.S.S., B.Sc, B.Eng, B.Ed

 Title of Paper
 : Calculus I

Course Number : M211

<u>**Time Allowed</u>** : Three (3) Hours</u>

Instructions

- 1. This paper consists of TWO sections.
 - a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.
 - b. SECTION B: 60 MARKS Answer ANY THREE questions. Submit solutions to ONLY THREE questions in Section B.
- 2. Each question in Section B is worth 20%.
- 3. Show all your working.
- 4. Non programmable calculators may be used (unless otherwise stated).
- 5. Special requirements: None.

This paper should not be opened until permission has been given by the invigilator.

1

SECTION A: ANSWER ALL QUESTIONS

Question 1

- (a) (i) Define a critical number c, of a function f(x). [3]
 - (ii) Find the critical number(s) for the function $h(x) = \sin^2 x + \cos x, \ 0 < x < 2\pi.$ [4]
 - (iii) For $f(x) = -x^2 + 3x$, $x \in [0,3]$, determine whether the Rolle's Theorem can be applied to f. If yes, find all values of c in the open interval (a, b) such that f'(c) = 0. If not, explain why. [5]
 - (iv) Identify the open intervals on which the function $g(x) = x^2 2x 8$ is increasing or decreasing. [3]
- (b) Use appropriate rules to find the limits of the following functions.

(i)
$$\lim_{x \to \infty} \frac{5x^2}{x+3}.$$
 [2]

(ii)
$$\lim_{x \to \infty} (\ln x)^{\frac{1}{x}}.$$
 [6]

(c) (i) Write the first four terms of the sequence $a_n = (-1)^{n+1} \left(\frac{2}{n}\right)$. [4]

(ii) Find the limit of the sequence
$$a_n = \frac{2n}{\sqrt{n^2 + 1}}$$
. [2]

(ii) Use the Root Test to show that the series

$$\sum_{n=1}^{\infty} \left(\frac{1}{n+1}\right)^n$$

converges.

[2]

(iii) Find the sum of the convergent series
$$\sum_{n=1}^{\infty} \frac{4}{n(n+2)}$$
. [5]

 $\mathbf{2}$

SECTION B: ANSWER ANY 3 QUESTIONS

Question 2

- (a) Analyze and sketch a graph of the function $y = \frac{x^2}{x^2 + 3}$. Label any intercepts, relative extrema, points of inflection, and asymptotes. [12]
- (b) For the following sequences with the given n^{th} term, determine if the sequence converges or diverges. If the sequence converges, find its limit.

(i)
$$a_n = (-1)^n \left(\frac{n}{n+1}\right).$$
 [4]

(ii)
$$a_n = \frac{10n^2 + 3n + 7}{2n^2 - 6}$$
. [4]

Question 3

- (a) State the definite integral representation for estimating the area of a region bounded by two curves. [4]
- (b) Sketch the region bounded by the graphs of the following equations and find the area of the region.

$$f(y) = y^2$$
, $g(y) = y + 2$.

- (c) State the alternating series test for convergence. [4]
- (d) Use the alternating series test to show that the series

$$\sum_{n=1}^\infty \frac{(-1)^n}{\sqrt{n}}$$

is convergent.

[4]

[8]

Question 4

(a) Find the volume of the solid generated by revolving the region bounded by the following equations about the x- axis.

$$y = x^{2} + 1, \quad y = -x^{2} + 2x + 5, \quad x = 0, \quad x = 3.$$
 [10]

(b) Find the arc length of the graph of the function over the indicated interval.

$$x = \frac{1}{3} \left(y^2 + 2 \right)^{\frac{3}{2}}, \quad 0 \le y \le 4.$$
[10]

Question 5

- (a) Give the definitions of the n^{th} Taylor Polynomial and the n^{th} Maclaurin Polynomial. [4]
- (b) Find the third Taylor polynomial, $P_3(x)$, for $f(x) = \sin x$, expanded about $c = \pi/6$. [6]
- (c) Set up and evaluate the definite integral for the area of the surface generated by revolving the curve about the x- axis

$$y = \sqrt{4 - x^2}, \quad -1 \le x \le 1.$$
 [10]

Question 6

(a) Show that the geometric series $\sum_{n=0}^{\infty} 3\left(\frac{1}{2}\right)^n$ converges and that its sum, S = 6. [4]

- (b) (i) What is a monotonic sequence? [2]
 - (ii) Show that the sequence $a_n = \frac{n}{n^2 + 1}$ is monotonic. [6]
- (c) (i) State the Second Derivative Test for local extrema. [4]
 (ii) Find the local extrema for the function f(x) = x³ 3x² + 3. [4]
 - 4