University of Swaziland

Final Examination, December 2015

B.A.S.S. , B.Sc, B.Eng, B.Ed

Title of Paper : Calculus I
Course Number : M211
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO sections.
a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.
b. SECTION B: 60 MARKS

Answer ANY THREE questions.
Submit solutions to ONLY THREE questions in Section B.
2. Each question in Section B is worth 20%.
3. Show all your working.
4. Non programmable calculators may be used (unless otherwise stated).
5. Special requirements: None.

This paper should not be opened until permission has been given by the invigilator.

SECTION A: ANSWER ALL QUESTIONS

Question 1

(a) (i) Define a critical number c, of a function $f(x)$.
(ii) Find the critical number(s) for the function $h(x)=\sin ^{2} x+\cos x, 0<x<2 \pi$.
(iii) For $f(x)=-x^{2}+3 x, x \in[0,3]$, determine whether the Rolle's Theorem can be applied to f. If yes, find all values of c in the open interval (a, b) such that $f^{\prime}(c)=0$. If not, explain why. [5]
(iv) Identify the open intervals on which the function $g(x)=x^{2}-2 x-8$ is increasing or decreasing.
(b) Use appropriate rules to find the limits of the following functions.
(i) $\lim _{x \rightarrow \infty} \frac{5 x^{2}}{x+3}$.
(ii) $\lim _{x \rightarrow \infty}(\ln x)^{\frac{1}{x}}$.
(c) (i) Write the first four terms of the sequence $a_{n}=(-1)^{n+1}\left(\frac{2}{n}\right)$. [4]
(ii) Find the limit of the sequence $a_{n}=\frac{2 n}{\sqrt{n^{2}+1}}$.
(d) (i) State the Root Test for series convergence.
(ii) Use the Root Test to show that the series

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n+1}\right)^{n}
$$

converges.
(iii) Find the sum of the convergent series $\sum_{n=1}^{\infty} \frac{4}{n(n+2)}$.

SECTION B: ANSWER ANY 3 QUESTIONS

Question 2

(a) Analyze and sketch a graph of the function $y=\frac{x^{2}}{x^{2}+3}$. Label any intercepts, relative extrema, points of inflection, and asymptotes. [12]
(b) For the following sequences with the given $n^{\text {th }}$ term, determine if the sequence converges or diverges. If the sequence converges, find its limit.
(i) $a_{n}=(-1)^{n}\left(\frac{n}{n+1}\right)$.
(ii) $a_{n}=\frac{10 n^{2}+3 n+7}{2 n^{2}-6}$.

Question 3

(a) State the definite integral representation for estimating the area of a region bounded by two curves.
(b) Sketch the region bounded by the graphs of the following equations and find the area of the region.

$$
\begin{equation*}
f(y)=y^{2}, \quad g(y)=y+2 . \tag{8}
\end{equation*}
$$

(c) State the alternating series test for convergence.
(d) Use the alternating series test to show that the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}
$$

is convergent.

Question 4

(a) Find the volume of the solid generated by revolving the region bounded by the following equations about the x - axis.

$$
\begin{equation*}
y=x^{2}+1, \quad y=-x^{2}+2 x+5, \quad x=0, \quad x=3 \tag{10}
\end{equation*}
$$

(b) Find the arc length of the graph of the function over the indicated interval.

$$
\begin{equation*}
x=\frac{1}{3}\left(y^{2}+2\right)^{\frac{3}{2}}, \quad 0 \leq y \leq 4 \tag{10}
\end{equation*}
$$

Question 5

(a) Give the definitions of the $n^{\text {th }}$ Taylor Polynomial and the $n^{\text {th }}$ Maclaurin Polynomial.
(b) Find the third Taylor polynomial, $P_{3}(x)$, for $f(x)=\sin x$, expanded about $c=\pi / 6$.
(c) Set up and evaluate the definite integral for the area of the surface generated by revolving the curve about the $x-$ axis

$$
\begin{equation*}
y=\sqrt{4-x^{2}}, \quad-1 \leq x \leq 1 \tag{10}
\end{equation*}
$$

Question 6

(a) Show that the geometric series $\sum_{n=0}^{\infty} 3\left(\frac{1}{2}\right)^{n}$ converges and that its sum, $S=6$.
(b) (i) What is a monotonic sequence?
(ii) Show that the sequence $a_{n}=\frac{n}{n^{2}+1}$ is monotonic.
(c) (i) State the Second Derivative Test for local extrema.
(ii) Find the local extrema for the function $f(x)=x^{3}-3 x^{2}+3$. [4]

