University of Swaziland

Supplementary Examination, July 2016

B.A.S.S. , B.Sc, B.Eng, B.Ed

Title of Paper : Calculus I
Course Number : M211
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO sections.
a. SECTION A(COMPULSORY): 40 MARKS

Answer ALL QUESTIONS.
b. SECTION B: 60 MARKS

Answer ANY THREE questions.
Submit solutions to ONLY THREE questions in Section B.
2. Each question in Section B is worth 20%.
3. Show all your working.
4. Non programmable calculators may be used (unless otherwise stated).
5. Special requirements: None.

This paper should not be opened until permission has been given BY THE INVIGILATOR.

SECTION A: ANSWER ALL QUESTIONS

Question 1

(a) (i) Define a point of inflection of a function $f(x)$.
(ii) State the Second Derivative Test for Concavity.
(iii) Determine the open intervals on which the graph of $f(x)=-x^{3}+$ $6 x^{2}-9 x-1$ is concave upward or concave downward.
(iv) Explain why the Mean Value Theorem does not apply to the function $f(x)=\frac{1}{x-3}$ on $[0,6]$.
(b) Use appropriate rules to find the limits of the following functions.
(i) $\lim _{x \rightarrow \infty} \frac{2 x-1}{3 x+2}$.
(ii) $\lim _{x \rightarrow 0^{+}}(\sqrt{x} \ln x)$.
(c) (i) State the Ratio Test for series convergence.
(ii) Use the Ratio Test to show that the series

$$
\sum_{n=0}^{\infty}\left(\frac{n!}{3^{n}}\right)^{n}
$$

diverges.
(iii) Find the sum of the convergent series $\sum_{n=1}^{\infty} \frac{4}{n(n+2)}$.
(d) (i) What is a power series?
(ii) How do you test a power series for convergence?
(iii) Define the Taylor series generated by a function $f(x)$ at a point $x=a$.

SECTION B: ANSWER ANY 3 QUESTIONS

Question 2

(a) Analyze and sketch a graph of the function $y=\frac{x}{\sqrt{x^{2}+2}}$. Label any intercepts, relative extrema, points of inflection, and asymptotes. [12]
(b) Determine the points of inflection and discuss the concavity of the graph of $f(x)=x^{4}-4 x^{3}$

Question 3
(a) State the definite integral representation for estimating the area of a region bounded by two curves.
(b) Sketch the region bounded by the graphs of the following equations and find the area of the region. $f(x)=\sqrt{x}+3, \quad g(x)=\frac{1}{2} x+3$.
(c) Use the definition of Taylor series to find the Taylor series, centered at $c=1$ for the function $f(x)=\frac{1}{x}$.

Question 4

(a) Find the volume of the solid generated by revolving the region bounded by the following equations about the $x-$ axis.

$$
y=x^{2}, \quad y=4 x-x^{2}
$$

(b) Find the arc length of the graph of $y=\frac{x^{3}}{6}+\frac{1}{2 x}$ over $\left[\frac{1}{2}, 2\right]$. [10]

Question 5

(a) Give the definitions of the $n^{\text {th }}$ Taylor Polynomial and the $n^{\text {th }}$ Maclaurin Polynomial.
(b) (i) What is a monotonic sequence?
(ii) Show that the sequence $a_{n}=\frac{2 n}{1+n}$ is monotonic.
(c) Apply L'Hôpital's rule to show that the sequence $a_{n}=\left(\frac{n+1}{n-1}\right)^{n}$ converges to e^{2}.

Question 6
(a) (i) State without proof the theorem for convergence of a geometric series.
(ii) Analyze the convergence of the geometric series $\sum_{n=0}^{\infty} \frac{3}{2^{n}}$. If it converges, find its sum.
(b) Show that the integral test is applicable to the series $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$. Apply the integral test to show that the series diverges.
(c) (i) Use the Ratio Test to find the radius of convergence of the power series $\sum_{n=0}^{\infty} 3(x-2)^{n}$.
(ii) Give the definitions of a P-series and a harmonic series.

