University of Swaziland

Supplementary Examination, July 2016

B.A.S.S., B.Sc, B.Eng, B.Ed

Title of Paper : Calculus I

Course Number : M211

<u>**Time Allowed</u></u> : Three (3) Hours</u>**

Instructions

. 10

- 1. This paper consists of TWO sections.
 - a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.
 - b. SECTION B: 60 MARKS Answer ANY THREE questions. Submit solutions to ONLY THREE questions in Section B.

2. Each question in Section B is worth 20%.

3. Show all your working.

4. Non programmable calculators may be used (unless otherwise stated).

5. Special requirements: None.

This paper should not be opened until permission has been given by the invigilator.

1

SECTION A: ANSWER ALL QUESTIONS

Question 1

(a) (i) Define a point of inflection of a function $f(x)$.	[2]
(ii) State the Second Derivative Test for Concavity.	[3]
(iii) Determine the open intervals on which the graph of $f(x) = 6x^2 - 9x - 1$ is concave upward or concave downward.	$-x^{3}+$ [4]
(iv) Explain why the Mean Value Theorem does not apply to th	e func-
tion $f(x) = \frac{1}{x-3}$ on [0, 6].	[2]
(b) Use appropriate rules to find the limits of the following function	as.
(i) $\lim_{x \to \infty} \frac{2x-1}{3x+2}.$	[2]
(ii) $\lim_{x\to 0^+} (\sqrt{x} \ln x).$	[6]
(c) (i) State the Ratio Test for series convergence.	[4]
(ii) Use the Ratio Test to show that the series	
$\sum_{n=0}^{\infty} \left(\frac{n!}{3^n}\right)^n$	
diverges.	[3]
(1) $$ $$ 4	r_1

- (iii) Find the sum of the convergent series $\sum_{n=1}^{\infty} \frac{4}{n(n+2)}$. [5]
- (d) (i) What is a power series? [3].
 - (ii) How do you test a power series for convergence? [3]
 - (iii) Define the Taylor series generated by a function f(x) at a point x = a. [3]

 $\mathbf{2}$

SECTION B: ANSWER ANY 3 QUESTIONS

Question 2

- (a) Analyze and sketch a graph of the function $y = \frac{x}{\sqrt{x^2 + 2}}$. Label any intercepts, relative extrema, points of inflection, and asymptotes. [12]
- (b) Determine the points of inflection and discuss the concavity of the graph of $f(x) = x^4 4x^3$ [8]

Question 3

- (a) State the definite integral representation for estimating the area of a region bounded by two curves. [4]
- (b) Sketch the region bounded by the graphs of the following equations and find the area of the region. $f(x) = \sqrt{x} + 3$, $g(x) = \frac{1}{2}x + 3$. [8]
- (c) Use the definition of Taylor series to find the Taylor series, centered at c = 1 for the function $f(x) = \frac{1}{x}$. [8]

Question 4

(a) Find the volume of the solid generated by revolving the region bounded by the following equations about the x- axis.

$$y = x^2, \quad y = 4x - x^2.$$

[10]

(b) Find the arc length of the graph of $y = \frac{x^3}{6} + \frac{1}{2x}$ over $\left[\frac{1}{2}, 2\right]$. [10]

3

Question 5

- (a) Give the definitions of the n^{th} Taylor Polynomial and the n^{th} Maclaurin Polynomial. [4]
- (b) (i) What is a monotonic sequence? [2]
 - (ii) Show that the sequence $a_n = \frac{2n}{1+n}$ is monotonic. [4]
- (c) Apply L'Hôpital's rule to show that the sequence $a_n = \left(\frac{n+1}{n-1}\right)^n$ converges to e^2 . [10]

Question 6

- (a) (i) State without proof the theorem for convergence of a geometric series. [2]
 - (ii) Analyze the convergence of the geometric series $\sum_{n=0}^{\infty} \frac{3}{2^n}$. If it converges, find its sum. [4]

(b) Show that the integral test is applicable to the series $\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$. Apply the integral test to show that the series diverges. [6]

- (c) (i) Use the Ratio Test to find the radius of convergence of the power series $\sum_{n=0}^{\infty} 3(x-2)^n$. [4]
 - (ii) Give the definitions of a *P*-series and a harmonic series. [4]

4