University of Swaziland

Final Examination, May 2016

B. Sc., B. Ed., B. A. S. S., B. Eng

Title of Paper : Calculus II

Course Code : M212
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO sections.
a. SECTION A(COMPULSORY): 40 MARKS

Answer ALL QUESTIONS.
b. SECTION B: 60 MARKS

Answer ANY THREE questions.
Submit solutions to ONLY THREE questions in Section B.
2. Each question in Section B is worth 20%.
3. Show all your working.
4. Special requirements: None

This paper should not be opened until permission has been given by the invigilator.

SECTION A: ANSWER ALL QUESTIONS

QUESTION 1

a. Consider the polar curves given by the equations
i. $r=\tan \theta \sec \theta$,
ii. $r=\frac{1}{3-3 \cos \theta}$.

Find their cartesian equations and describe or identify the curves.
b. Eliminate the parameter t to find a cartesian equation of the curve

$$
x=e^{2 t}, \quad y=t+1 .
$$

c. Define the continuity of a function $f(x, y)$ at the point $\left(x_{0}, y_{0}\right)$.
d. Find the limit, if it exists, or show that the limit doesn't exist

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-y^{4}}{x^{4}+y^{4}}
$$

e. Verify that $z=\ln \left(e^{x}+e^{y}\right)$ is a solution of the differential equation

$$
\frac{\partial^{2} z}{\partial x^{2}}\left(\frac{\partial^{2} z}{\partial y^{2}}\right)-\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}=0
$$

f. Find the polar coordinates with $0 \leq \theta \leq 2 \pi$, of the point with cartesian coordinates $(1,-\sqrt{3})$.
g. Find the directional derivative of the function $f(x, y, z)=\ln (3 x+6 y+9 z)$ at the point $(1,1,1)$ in the direction of the vector $\underline{v}=4 \hat{i}+12 \hat{j}+6 \hat{k}$.
h. Evaluate $\iint_{R}\left(3 x+4 y^{2}\right) d A$, where R is the region in the upper half plane bounded by the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.

SECTION B: ANSWER ANY 3 QUESTIONS

QUESTION 2

a. Evaluate the iterated integral by first converting it to polar coordinates

$$
\int_{0}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} x^{2} y^{2} d x d y
$$

b. Evaluate

$$
\iiint_{E} x e^{x^{2}+y^{2}+z^{2}} d V
$$

where E is the unit ball $x^{2}+y^{2}+z^{2} \leq 1$.

QUESTION 3

a. Given the polar curve $r=1-\cos \theta, 0 \leq \theta \leq 2 \pi$
i. Sketch the curve.
ii. Find the length of the curve.
b. Use the chain rule to find $\frac{d z}{d t}$ where

$$
z=x^{2}+y^{2}+x y, \quad x=\sin t, \quad y=e^{t} .
$$

c. Find the cartesian coordinates of the point with polar coordinates $\left(2,-\frac{7 \pi}{6}\right)$.

QUESTION 4

a. Use the Lagrange multipliers to find the maximum and minimum values of the function

$$
f(x, y)=3 x+6 y
$$

subject to the constraint

$$
x^{2}+y^{2}=10 .
$$

b. Use a triple integral to find the volume of the tetrahedron T, bounded by the planes $x+2 y+z=2, x=2 y, x=0$ and $z=0$.

QUESTION 5

a. Suppose z is defined implicitly as a function of x and y by the equation

$$
x^{2}-y^{2}+z^{2}-2 x y z=4
$$

find
i. $\frac{\partial z}{\partial x}$,
ii. $\frac{\partial z}{\partial y}$.
b. Let $z=\arcsin (x-y), x=s^{2}+t^{2}, y=1-2 s t$. Using the chain rule
i. find $\frac{\partial z}{\partial s}$.
ii. show that $z_{t}=2\left(2-s^{2}-t^{2}-2 s t\right)^{-0.5}$.

QUESTION 6

a. Find and classify the critical points of

$$
f(x, y)=4 x y-x^{4}-y^{4}
$$

b. Evaluate

$$
\iint_{D}(x+2 y) d A
$$

where D is the region bounded by the parabolas $y=2 x^{2}$ and $y=1+x^{2}$.

