University of Swaziland

Final Examination, May 2016

B. Sc., B. Ed., B. A. S. S., B. Eng

Title of Paper: Calculus IICourse Code: M212Time Allowed: Three (3) Hours

Instructions

- 1. This paper consists of TWO sections.
 - a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.
 - b. SECTION B: 60 MARKS Answer ANY THREE questions. Submit solutions to ONLY THREE questions in Section B.
- 2. Each question in Section B is worth 20%.
- 3. Show all your working.
- 4. Special requirements: None

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A: ANSWER ALL QUESTIONS

QUESTION 1

a. Consider the polar curves given by the equations

i.
$$r = \tan\theta \sec\theta$$
, [3]

$$\mathbf{ii.} \ r = \frac{1}{3 - 3\cos\theta}.$$

Find their cartesian equations and describe or identify the curves.

b. Eliminate the parameter t to find a cartesian equation of the curve [2]

$$x = e^{2t}, \quad y = t + 1.$$

c. Define the continuity of a function f(x, y) at the point (x_0, y_0) . [3]

d. Find the limit, if it exists, or show that the limit doesn't exist

$$\lim_{y)\to(0,0)}\frac{x^4-y^4}{x^4+y^4}$$

[4]

e. Verify that $z = \ln(e^x + e^y)$ is a solution of the differential equation

(x

$$\frac{\partial^2 z}{\partial x^2} \left(\frac{\partial^2 z}{\partial y^2} \right) - \left(\frac{\partial^2 z}{\partial x \partial y} \right)^2 = 0$$

[7]

- f. Find the polar coordinates with $0 \le \theta \le 2\pi$, of the point with cartesian coordinates $(1, -\sqrt{3})$. [3]
- g. Find the directional derivative of the function $f(x, y, z) = \ln(3x + 6y + 9z)$ at the point (1, 1, 1) in the direction of the vector $\underline{v} = 4\hat{i} + 12\hat{j} + 6\hat{k}$. [5]
- h. Evaluate $\iint_{R} (3x + 4y^2) dA$, where R is the region in the upper half plane bounded by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$. [8]

SECTION B: ANSWER ANY 3 QUESTIONS

QUESTION 2

a. Evaluate the iterated integral by first converting it to polar coordinates

 $\int_0^2 \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} x^2 y^2 dx dy$

b. Evaluate

$$\iiint_E x e^{x^2 + y^2 + z^2} dV$$

where E is the unit ball $x^2 + y^2 + z^2 \le 1$.

QUESTION 3

- **a.** Given the polar curve $r = 1 \cos \theta$, $0 \le \theta \le 2\pi$
 - i. Sketch the curve. [4]
 - ii. Find the length of the curve. [10]

b. Use the chain rule to find $\frac{dz}{dt}$ where $z = x^2 + y^2 + xy$, $x = \sin t$, $y = e^t$.

[3]

c. Find the cartesian coordinates of the point with polar coordinates $(2, -\frac{7\pi}{6})$. [3]

QUESTION 4

a. Use the Lagrange multipliers to find the maximum and minimum values of the function

$$f(x,y) = 3x + 6y$$

subject to the constraint

$$x^2 + y^2 = 10.$$
 [10]

b. Use a triple integral to find the volume of the tetrahedron T, bounded by the planes x + 2y + z = 2, x = 2y, x = 0 and z = 0. [10]

dV

[10]

[10]

QUESTION 5

a. Suppose z is defined implicitly as a function of x and y by the equation

 $x^2 - y^2 + z^2 - 2xyz = 4,$

find

i.
$$\frac{\partial z}{\partial x}$$
, [3]
ii. $\frac{\partial z}{\partial y}$. [3]

b. Let $z = \arcsin(x - y)$, $x = s^2 + t^2$, y = 1 - 2st. Using the chain rule

i. find
$$\frac{\partial z}{\partial s}$$
. [5]

ii. show that
$$z_t = 2(2 - s^2 - t^2 - 2st)^{-0.5}$$
. [9]

QUESTION 6

a. Find and classify the critical points of

$$f(x,y) = 4xy - x^4 - y^4.$$
[10]

b. Evaluate

$$\iint_D (x+2y) dA$$

where D is the region bounded by the parabolas $y = 2x^2$ and $y = 1 + x^2$. [10]

END OF EXAMINATION