University of Swaziland

Supplementary Examination, July 2016

B. Sc., B. Ed., B. A. S. S., B. Eng

Title of Paper : Calculus II
Course Code : M212
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO sections.
a. SECTION A(COMPULSORY): $\mathbf{4 0}$ MARKS

Answer ALL QUESTIONS.
b. SECTION B: 60 MARKS

Answer ANY THREE questions.
Submit solutions to ONLY THREE questions in Section B.
2. Each question in Section B is worth 20%.
3. Show all your working.
4. Special requirements: None

This paper should not be opened until permission has been given by the invigilator.

SECTION A: ANSWER ALL QUESTIONS

QUESTION 1

a. Verify that the function $z=\ln \left(e^{x}+e^{y}\right)$, is a solution of the differential equations
i. $\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}-1=0$,
ii. $\frac{\partial^{2} z}{\partial x^{2}} \frac{\partial^{2} z}{\partial y^{2}}-\left(\frac{\partial^{2} z}{\partial x \partial y}\right)^{2}=0$.
b. Use a double integral to find the area of the region bounded by the curves $x y=2, x=$ $2 \sqrt{2}$ and $y=4$.
c. Find and classify the critical points of the function $f(x, y)=x^{4}+y^{4}-4 x y+1$. [10]
d. Use Lagrange multipliers to find the maximum and minimum values of the function

$$
f(x, y)=x^{2}+2 y^{2}
$$

subject to the constraint

$$
x^{2}+y^{2}=1
$$

SECTION B: ANSWER ANY 3 QUESTIONS

QUESTION 2

a. Consider the cardiod $r=1-\cos \theta$
i. Sketch the cardiod.
ii. Find the length of the cardiod.
b. Find an equation in polar coordinates for each of the following curves
i. $2 x+3 y=3$.
ii. $x^{2}-2 x+y^{2}=0$.

QUESTION 3

Evaluate the following integrals
a.

$$
\iint_{D}\left(6 x^{2}-40 y\right) d A
$$

where D is the triangle with vertices $(0,0),(5,3)$ and $(0,3)$.
b.

$$
\iiint_{E} 2 x d V
$$

where E is the region under the plane $2 x+3 y+z=6$ that lies in the first octant.[12]

QUESTION 4

a. Suppose that $z=f(x, y), x=r \cos \theta$ and $y=r \sin \theta$. Prove that

$$
\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}=\left(\frac{\partial f}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial f}{\partial \theta}\right)^{2}
$$

b. Find the directional derivative of the function $f(x, y, z)=x^{3} e^{y}+x z$ in the direction of the vector from $P_{1}(4,0,16)$ to $P_{2}(-2,1,4)$.

QUESTION 5

a. Consider the curve $r=1-\sin \theta$
i. Sketch the curve.
ii. Find the area enclosed by the curve.
b. Find the volume under the surface $z=16 x y+200$, above the region in the $x-y$ plane bounded by $y=x^{2}$ and $y=8-x^{2}$.

QUESTION 6

a. Find the equation of the tangent plane to the surface $z=x \sin (x+y)$ at the point $(-1,1,0)$.
b. Evaluate

$$
\iint_{R} \frac{x}{\sqrt{x^{2}+y^{2}}} d x d y
$$

where R is the region bounded by the lines $y=x, y=-2$ and $x=0$.

