University of Swaziland

Final Examination, May 2016
B.Sc II, B.A.S.S II, B.Ed II, B.Eng II

Title of Paper : Ordinary Differential Equations
Course Code : M213
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO sections.
a. SECTION A(COMPULSORY): 40 MARKS

Answer ALL QUESTIONS.
b. SECTION B: 60 MARKS

Answer ANY THREE questions.
Submit solutions to ONLY THREE questions in Section B.
2. Each question in Section B is worth 20%.
3. Show all your working.
4. Non programmable calculators may be used (unless otherwise stated).
5. Special requirements: None.

This paper should not be opened until permission has been given by the invigilator.

SECTION A: ANSWER ALL QUESTIONS

Question 1

(a) (i) Find the differential equation of the family of curves

$$
y=A \cos 2 x+B \sin 2 x
$$

where A and B are arbitrary constants.
(ii) What is the order of the differential equation whose solution is the circle

$$
(x-a)^{2}+y^{2}=a^{2}, \text { where } a \text { is an arbitrary constant? }
$$

(iii) Solve

$$
\frac{d y}{d x}=x y+x+y+1
$$

(b) Show the differential equation

$$
e^{x}(\cos y d x-\sin y d y)=0, \quad y(0)=0
$$

is exact and then solve.
(c) Solve the Bernoulli equation

$$
3 y^{\prime}+x y=x y^{-2}
$$

(d) Solve

$$
\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=2 e^{x}
$$

(e) Solve the Euler Cauchy equation

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=0
$$

(f) Classify the singular point(s) of the equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0, \text { where } \mathrm{n} \text { is constant. }
$$

SECTION B: ANSWER ANY 3 QUESTIONS

Question 2

Solve the following differential equations.
(a) $\frac{d y}{d x}=\frac{x y+y}{x y+x}$.
(b) $\frac{d y}{d x}=\frac{2}{x+2 y-3}$.
(c) $x \frac{d y}{d x}+\frac{y^{2}}{x}=y$.
(d) $(x+1) \frac{d y}{d x}-n y=e^{x}(x+1)^{n+1}$, where n is constant.

Question 3

(a) Show that if $\left[\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) / N\right]=f(x)$
a function of x alone, then $e^{\int f(x) d x}$ is an integrating factor of $M(x, y) d x+N(x, y) d y=0$.
(b) Solve the system of equations

$$
\begin{gathered}
\frac{d x}{d t}-7 x+y=0 \\
\frac{d y}{d t}-2 x-5 y=0
\end{gathered}
$$

Question 4

Find two linearly independent solutions of the equation

$$
2 x^{2} y^{\prime \prime}+x y^{\prime}-\left(x^{2}+1\right) y=0
$$

using Frobenuius method (generalized series solution method).

Question 5

(a) For the differential equation

$$
y^{\prime}=p(x) y^{2}+q(x) y+r(x)
$$

if the particular solution is $y=v(x)$, show that substituting $y=v(x)+\frac{1}{z}$ will reduce the given non linear differential equation in to inear differential equation in z.

Find the general solution of

$$
y^{\prime}=2 x y^{2}+(1-4 x) y+2 x-1
$$

if the particular solution is $y=1$.
(b) Use the method of variation of parameters to find the solution of

$$
y^{\prime \prime}-2 y^{\prime}-3 y=e^{x}
$$

Question 6

(a) Given $y=x$ is a solution of

$$
\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0
$$

find another linearly independent solution by reducing the order.
(b) Solve the following differential equation using Laplace transform method

$$
y^{\prime \prime}-2 y-8 y=0, \quad y(0)=3, y^{\prime}(0)=6
$$

Table 1: Table of Laplace Transforms

