UNIVERSITY OF SWAZILAND

FINAL EXAMINATION, 2015/2016

B.Sc. II, B.Ed II

Title of Paper : M	Iathematics fo	or Scientists
--------------------	----------------	---------------

Course Number : M215

Time Allowed : Three (3) Hours

Instructions

A

- 1. This paper consists of TWO (2) Sections:
 - a. SECTION A (40 MARKS)
 - Answer **ALL** questions in Section A.
 - b. SECTION B
 - There are FIVE (5) questions in Section B.
 - Each question in Section B is worth 20 Marks.
 - Answer ANY THREE (3) questions in Section B.
 - If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.
- 2. Show all your working.

Special Requirements: None

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

A1.	Find the angle between $\overline{u} = (1, -2, 4)$ and $\overline{v} = (1, 2, 4)$.	(4)
A2.	State	
	(a) Mean value theorem,	
	(b) L'Hospital's rule,	
	(c) Maclaurin's formula.	(3,2
A3.	Find the partial derivatives of $f(x, y) = x^2 y^5$ at $p(-1, 2)$.	(3)
A4.	State the equality of mixed derivatives theorem.	(2)
A5.	For the function $f(x, y, z) = xy + z^2 + x + y$, find	
	(a) gradient,	
	(b) stationary points,	(2,2)
A6.	Describe Lagrange's method for optimization problems: minimize $f(x)$, subject to $h(x) = 0$.	(4)
A7.	Compute the volume under the graph of $z = f(x, y) = x + 4y$ over the region $0 < x < 2$, $1 < y < 2$.	(5)
A8.	Consider a double integral $\int \int f(x,y)dxdy$. What transformations should be done	
	to pass to polar coordinates? J_{D}	(3)
A9.	Give definitions and examples of	
	(a) ODE with homogeneous coefficients,	
	(b) exact ODE.	
	(c) characteristic (auxiliary) equation	
	for linear ODE with constant coefficients	(2, 2)

SECTION B: Answer Any THREE Questions

QUESTION B1 [20 Marks]

QUESTION B2 [20 Marks]

B2. (a) Evaluate

(i)
$$\lim_{x \to 0^{+}} \frac{x - \sin x}{x^{3}},$$

(ii)
$$\lim_{x \to 0^{+}} x e^{\frac{1}{x}}.$$
 (4,4)

(b) (i) Use the quadratic approximation to compute $\sqrt{1+x}$ for small |x| and estimate the error,

- (ii) In particular compute $\sqrt{1.02}$.
- (c) Find the third Taylor's polynomial of $f(x) = 1 + x^2 + 2x^3$ about $x_0 = 1$. (5)

(4,3)

(5)

QUESTION B3 [20 Marks]

B3. (a) Apply the chain rule to evaluate f'_u and f'_v if $f(x,y) = \exp(xy), x = u^2, y = uv$. (6)(b) If $f(u, v, w) = u^2 - w^2$, what is df? (3)

- (c) Find and classify all stationary points of $f(x, y) = x^3 + y^3 3x 3y$. (6)
- (d) Maximize $f(x, y) = x^2 y^2$, subject to 2x + y = 5. (5)

QUESTION B4 [20 Marks]

B4. (a) Evaluate the volume of the solid below the surface $z = x^2 + 2y$ and over the region R, where $R = \{(x, y) : 0 < x < 2, x^2 < y < 2x\}$. (7)

(b) Compute $\int \int_{R} (x^2 + y^2)^{\frac{3}{2}} dx dy$ in polar coordinates if R is the region in the first quadrant bounded by the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$, and the coordinate (5)axes.

(c) Evaluate
$$\int_0^1 \int_0^{\sqrt{4-x^2}} \int_{2x-y}^{2x+y} z dz \, dy \, dx.$$
 (8)

QUESTION B5 [20 Marks]

B5. (a) Solve IVP $2ydx = 3xdy$, when $x = -2, y = 1$.		(5)
	(b) Solve ODE with homogeneous coefficients $3(3x^2 + y^2)dx - 2xydy = 0$	(5)

- (5)
- (c) Test the equation (x + y)dx + (x y)dy = 0 for exactness and solve it. (5)
- (d) Solve 4y'' + 4y'' + y' = 0.

END OF EXAMINATION PAPER