University of Swaziland

Final Examination, 2015/2016

B.Sc. II, B.Eng II, BASS II, BED. II

Title of Paper : Linear Algebra
Course Number : M220
Time Allowed : Three (3) Hours
Instructions

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: NONE

This examination paper should not be opened until permission has been given by the invigilator.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

A1. (a) Let V be all ordered pairs of real numbers. Define addition and scalar multiplication as follows; $(x, y)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}+1, y_{1}+y_{2}+1\right)$ and $\alpha(x, y)=$ $\left(\alpha x_{1}+\alpha-1, \alpha y_{1}+\alpha-1\right)$. Show that V is a vector space.
(b) Show that the vectors $v_{1}=(4,3,-2,3), v_{2}=(6,5,-5,1)$ and $v_{3}=(2,-1,3,5)$ are linearly dependent and express one as a linear combination of the other two.
(c) Determine whether the following has a non-trivial solution:

$$
\begin{array}{r}
2 x+y-z+2 w=0 \\
x+y+z+w=0 \\
3 x+2 y+2 z+2 w=0
\end{array}
$$

A2. (a) Use Crammer's rule to solve (i) and use Gaussian elimination to solve (ii).

$$
\begin{align*}
& \text { (i) }\left(\begin{array}{ccc}
1 & -3 & 1 \\
-2 & 2 & -1 \\
4 & -4 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-1 \\
1 \\
-2
\end{array}\right) \\
& \text { (ii) }\left(\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 0 \\
1 & 2 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \tag{10}
\end{align*}
$$

(b) Find the inverses by inspection.
$B=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -3\end{array}\right) \quad C=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1\end{array}\right)$
(i) State the Cayley-Hamilton Theorem.
(ii) Given that $A=\left(\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right)$, verify Cayley-Hamilton theorem for the matrix A.

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3 [20 Marks]

(a) Determine whether the sets of vectors in the vector space V are linearly dependent or independent
(i) $\left\{2 x^{2}+x, x^{2}+3, x\right\} \quad V=P_{2}(x)$.
(ii) $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 2 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)\right\} V=M_{2}(\mathbb{R})$
(b) Let $S=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be a set of non-zero vectors in a vector space V. Prove that S is linearly dependent \Leftrightarrow one of the vectors is a linear combination of the preceeding vectors in S.

QUESTION B4 [20 Marks]

(a) Find conditions for λ and μ for which the following system has
(i) a unique solution
(ii) no solution or
(iii) infinitely many solutions.

$$
\begin{align*}
x+y-4 z & =0 \\
2 x+3 y+z & =1 \\
4 x+4 y+\lambda z & =\mu \tag{10}
\end{align*}
$$

(b) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by $T(x, y)=(x-2 y, 2 x+y, x+y)$
(i) Find the standard matrix of T
(ii) Find the matrix of T with respect to β^{1} and β where $\beta^{1}=\{(1,-1),(0,1)\}$ and $\beta=\{(1,1,0)(0,1,1),(1,-1,1)\}$

QUESTION B5 [20 Marks]

(a) Given that $A=\left(\begin{array}{ccc}1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 3 & -2\end{array}\right)$ Use the augemented matrix $[A: I]$ to find A^{-1}
(b) (i) In (a) above find a finite sequence of elementary matrices E_{1}, \cdots, E_{k} such that $E_{k} E_{k-1}, \cdots E_{1} A=I$.
(ii) Show that $A^{-1}=E_{k} E_{k-1} \cdots E_{1}$
(c) Evaluate the following determinant using cofactor expansion along the second row

$$
\left|\begin{array}{ccc}
3 & 2 & 1 \\
-2 & 1 & 2 \\
1 & -3 & 2
\end{array}\right|
$$

(d) Determine whether the system has a nontrivial solution

$$
\begin{aligned}
-x_{1}+2 x_{2}+2 x_{3}+2 x_{4} & =0 \\
3 x_{1}+x_{2}-x_{3}+2 x_{4} & =0 \\
x_{1}-2 x_{2}+3 x_{3}-x_{4} & =0
\end{aligned}
$$

QUESTION B6 [20 Marks]

(a) Prove that if a homogeneous system has more unknowns than the number of equations then it has a non-trivial solution.
(b) Find the characteristic polynomial eigenvalues and eigenvectors of the following $\operatorname{matrix}\left(\begin{array}{ccc}2 & 2 & 3 \\ 1 & 2 & 1 \\ 2 & -2 & 1\end{array}\right)$

QUESTION B7 [20 Marks]

(a) Show that B is a basis of \mathbb{R}^{3} where $B=\{(0,2,1),(1,0,2),(1,-1,0)\}$
(b) Show that the vector $\left(\begin{array}{c}12 \\ 12 \\ -3\end{array}\right)$ is a linear combination of the vectors $(2,0,1)^{T},(4,2,0)^{T},(1,3,-1)^{T}$
(c) Let $B_{1}=\left\{\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right),\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)\right\}$ and $B_{2}=\left\{\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$ be bases. Find the transition matrix from B_{1} to B_{2}

