UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION, 2015/2016

B.Sc. II, B.Eng. II, BASS II, BED. II

Title of Paper : Linear Algebra

Course Number : M220

Time Allowed : Three (3) Hours

Instructions

- 1. This paper consists of TWO (2) Sections:
 - a. SECTION A (40 MARKS)
 - Answer **ALL** questions in Section A.

b. SECTION B

- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.
- 2. Show all your working.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

- A1. (a) Give the definition of each of the following;
 - (i) A vector space
 - (ii) An orthogonal matrix
 - (iii) A symmetix matrix
 - (iv) a skew-symmetric matrix
 - (iv) a skew-symmetric matrix (b) Find the eigenvalues and the corresponding eigenvectors for $A = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 0 & -1 \\ 4 & -4 & 5 \end{pmatrix}_{(10)}$

A2. (a) Determine whether the following mappings are linear transformations

(i)
$$T : \mathbb{R}^3 \to \mathbb{R}^2$$
 defined by $T(x, y, z) = (x + y - z, 2x + y)$ (5)

(1(

(ii)
$$T : \mathbb{R}^3 \to \mathbb{R}^3$$
 defined by $T(x, y, z) = (z + 1, y)$ (5)

(b) Prove that the set $B = \{x^2 + 1, x - 1, 2x + 2\}$ is a basis for the vector space $V = p_2(x)$ (10

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3 [20 Marks]

- (a) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be T(x, y, z) = (x + y + z, x + 2y + 3z)
 - (5)(i) Find the standard matrix of T.
 - (ii) Find the matrix of T relative to the R-bases $B_1 = \{(1,1,0), (0,1,1), (0,0,1)\} \quad B_2 = \{(1,2), (1,3)\}$ (5)

(b) Verify the Cayley-Hamilton theorem for

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & -1 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$
(10)

(5)

QUESTION B4 [20 Marks]

(a) Find the inverse of the matrix A in two ways

- (6)(i) using the augemented matrix [A:I]
- (ii) by computing a product $E_k E_{k-1} \cdots E_2 E_1$ of elementary matrices

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 1 & -1 & -2 \end{pmatrix}$$
(6)

(b) Prove that if A and B are both non singular $n \times n$ matrices, then the product AB is also non singular and $(AB)^{-1} = B^{-1}A^{-1}$ (4)

(c) Prove that
$$[M_i(\alpha)]^{-1} = M_i(\frac{1}{\alpha}) \quad \alpha \neq 0$$
 (4)

QUESTION B5 [20 Marks]

(a) Solve the system

 $2x_1 + 5x_2 - 8x_3 + 6x_4 = 4$ $x_1 + 2x_2 - 3x_3 + 4x_4 = 1$ $x_1 + 4x_2 - 7x_3 + 2x_4 = 8$

(b) For which k does the following system have non-trivial solutions

$$kx_1 + 2x_2 - x_3 = 0$$

(k+1)x_1 + dx_2 + ox_3 = 0
-x_1 + kx_2 + kx_3 = 0

(c) Determine whether the vectors are linearly independent (2, 4, 0, 4, 3), (1, 2, -1, 3, 1), (-1, -2, 5, -7, 1) (4)

QUESTION B6 [20 Marks]

(a) (i) Give the definition of a basis of a vector space
(ii) Determine whether the vectors (1, 1, 1), (1, 2, 3) and (2, -1, 1) form a basis for ℝ³

(b) Use the adjoint of A to find
$$A^{-1}$$
 where $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 5 & 7 \end{bmatrix}$ (7)

(c) Show that
$$\begin{pmatrix} 0 & 0 & 5 \\ 0 & 0 & -1 \\ -5 & 1 & 0 \end{pmatrix}$$
 is skew symmetric (5)

(8)

(8)

QUESTION B7 [20 Marks]

- (a) Let V be a vector space, S_1 and S_2 be finite sets of non-zero vector in V such that $S_1 \subset S_2$. Show that
 - (i) S_1 linearly dependent $\Rightarrow S_2$ is also linearly independent (5)
 - (ii) S_2 linearly independent $\Rightarrow S_1$ is also linearly independent. (5)
- (b) Prove that if a homogeneous system has more unknowns than the number of equations than it always has a nontrivial solution. (10)

END OF EXAMINATION PAPER_