University of Swaziland

B.Sc. II, B.Eng. II, BASS II, BED. II

Title of Paper : Linear Algebra
Course Number : M220
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: NONE

This examination paper should not be opened until permission has been given by the invigilator.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

A1. (a) Give the definition of each of the following;
(i) A vector space
(ii) An orthogonal matrix
(iii) A symmetix matrix
(iv) a skew-symmetric matrix
(b) Find the eigenvalues and the corresponding eigenvectors for $A=\left(\begin{array}{ccc}1 & 2 & -1 \\ 1 & 0 & -1 \\ 4 & -4 & 5\end{array}\right)$

A2. (a) Determine whether the following mappings are linear transformations
(i) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y, z)=(x+y-z, 2 x+y)$
(ii) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(x, y, z)=(z+1, y)$
(b) Prove that the set $B=\left\{x^{2}+1, x-1,2 x+2\right\}$ is a basis for the vector space $V=p_{2}(x)$

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3 [20 Marks]

(a) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be $T(x, y, z)=(x+y+z, x+2 y+3 z)$
(i) Find the standard matrix of T.
(ii) Find the matrix of T relative to the R -bases

$$
\begin{equation*}
B_{1}=\{(1,1,0),(0,1,1),(0,0,1)\} \quad B_{2}=\{(1,2),(1,3)\} \tag{5}
\end{equation*}
$$

(b) Verify the Cayley-Hamilton theorem for
$\left(\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 3 \\ 3 & 2 & 1\end{array}\right)$

QUESTION B4 [20 Marks]

(a) Find the inverse of the matrix A in two ways
(i) using the augemented matrix $[A: I]$
(ii) by computing a product $E_{k} E_{k-1} \cdots E_{2} E_{1}$ of elementary matrices

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 3 & 1 \\
1 & -1 & -2
\end{array}\right)
$$

(b) Prove that if A and B are both non singular $n \times n$ matrices, then the product $A B$ is also non singular and $(A B)^{-1}=B^{-1} A^{-1}$
(c) Prove that $\left[M_{i}(\alpha)\right]^{-1}=M_{i}\left(\frac{1}{\alpha}\right) \quad \alpha \neq 0$

QUESTION B5 [20 Marks]

(a) Solve the system

$$
\begin{array}{r}
2 x_{1}+5 x_{2}-8 x_{3}+6 x_{4}=4 \\
x_{1}+2 x_{2}-3 x_{3}+4 x_{4}=1 \\
x_{1}+4 x_{2}-7 x_{3}+2 x_{4}=8 \tag{8}
\end{array}
$$

(b) For which k does the following system have non-trivial solutions

$$
\begin{aligned}
k x_{1}+2 x_{2}-x_{3} & =0 \\
(k+1) x_{1}+d x_{2}+o x_{3} & =0 \\
-x_{1}+k x_{2}+k x_{3} & =0
\end{aligned}
$$

(c) Determine whether the vectors are linearly independent

$$
(2,4,0,4,3),(1,2,-1,3,1),(-1,-2,5,-7,1)
$$

QUESTION B6 [20 Marks]

(a) (i) Give the definition of a basis of a vector space
(ii) Determine whether the vectors $(1,1,1),(1,2,3)$ and $(2,-1,1)$ form a basis for \mathbb{R}^{3}
(b) Use the adjoint of A to find A^{-1} where $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 5 & 7\end{array}\right]$
(c) Show that $\left(\begin{array}{ccc}0 & 0 & 5 \\ 0 & 0 & -1 \\ -5 & 1 & 0\end{array}\right)$ is skew symmetric

QUESTION B7 [20 Marks]

(a) Let V be a vector space, S_{1} and S_{2} be finite sets of non-zero vector in V such that $S_{1} \subset S_{2}$. Show that
(i) S_{1} linearly dependent $\Rightarrow S_{2}$ is also linearly independent
(ii) S_{2} linearly independent $\Rightarrow S_{1}$ is also linearly independent.
(b) Prove that if a homogeneous system has more unknowns than the number of equations than it always has a nontrivial solution.

