UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATIONS 2015/2016

B.Sc. / B.Ed. / B.A.S.S. II

TITLE OF PAPER : FOUNDATIONS OF MATHEMATICS
COURSE NUMBER : M231
TIME ALLOWED : THREE (3) HOURS
INSTRUCTIONS : 1. THIS PAPER CONSISTS OF SEVEN QUESTIONS.
2. ANSWER ALL QUESTIONS IN SECTION A.
3. ANSWER ANY THREE QUESTIONS IN SECTION B.

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

SECTION A

QUESTION 1

(a) What do you understand by the following?
(i) Universal Instantiation; [3]
(ii) Universal Generalization; [3]
(iii) Existential Instantiation; [3]
(iv) Existential Generalization. [3]
(b) State the Pigeonhole Principle. [2]
(c) State the Principle of Mathematical Induction II. [2]
(c) State the Principle of Strong Mathematical Induction. [2]
(d) State the Fundamental Theorem of Arithmetic. [2]

QUESTION 2

(a) (i) Suppose you want to show that $A \Longrightarrow B$ is false, where A and B are statements. How should you do this? What should you try to show about the truth of A and B ?.
(ii) Apply your answer of part (i) to show that the statement "If x is a real number that satisfies $-3 x^{2}+2 x+8=0$, then $x>0$ " is false.
(b) For each of the following, write the converse and the contrapositive:
(i) If n is an integer for which n^{2} is even, then n is even.
(ii) Suppose that t is an angle between 0 and π. If t satisfies $\sin (t)=\cos (t)$, then $t=\frac{\pi}{4}$.
(c) Write the negation of the following definition:

The function f of one variable is a convex function if and only if for all real numbers x and y and for all real numbers t with $0 \leq t \leq 1$, it follows that $f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)$.

SECTION B

QUESTION 3

(a) Prove that if $A \Rightarrow B, B \Rightarrow C$, and $C \Rightarrow A$, then A is equivalent to B and A is equivalent to C.
(b) Determine the following sets:
(i) $\{m \in \mathbb{N}: \exists n \in \mathbb{N}$ with $m \leq n\}$;
(ii) $\{m \in \mathbb{N}: \forall n \in \mathbb{N}$ we have $m \leq n\}$.
(c) Let a be an algebraic number and let r be a rational number. Show that $r a$ is an algebraic number.

QUESTION 4

(a) Prove that between any two distinct irrational numbers, there is a rational number and an irrational number.
(b) Define the following:
(i) Fallacy of affirming the conclusion;
(ii) Fallacy of denying the antecedent.
(c) Using truth tables, analyze the following argument and state whether it is valid or invalid
"All Germans are Europeans.
My neighbor is not a German.
Therefore my neighbor is not a European."

QUESTION 5

(a) Describe a modified induction procedure that could be used to prove statements of the form:
(i) For all integers $n \leq k, P(n)$ is true, where $P(n)$ is a statement containing the integer n.
(ii) For all integers $n, P(n)$, where $P(n)$ is as in Part (i).
(iii) For every positive odd integer, something happens.
(b) For all non-negative integers n define the number u_{n}. inductively as

$$
\begin{aligned}
u_{0} & =0 \\
u_{k+1} & =3 u_{k}+3^{k} \quad \text { for } k \geq 0 .
\end{aligned}
$$

Prove that $u_{n}=n 3^{n-1}$ for all non-negative integers n.
(c) If $f(n)=3^{2 n}+7$, where n is a natural number, show that $f(n+1)-f(n)$ is divisible by 8 . Hence prove by induction that $3^{2 n}+7$ is divisible by 8 .

QUESTION 6

(a) Let p_{1} and p_{2} be distinct prime numbers. Prove that the real numbers $\sqrt{p_{1}}+\sqrt{p_{2}}$ and $\sqrt{p_{1}}-\sqrt{p_{2}}$ are irrational.
(b) Prove that the square root of a natural number is rational if and only if the natural number is a perfect square.

QUESTION 7

(a) (i) Define an equivalence relation.
(ii) Show that the relation

$$
\mathcal{R}=\{(x, y) \in \mathbb{Z} \times \mathbb{Z}: x \equiv y \quad(\bmod 2)\}
$$

is an equivalence relation. What are the equivalence classes of \mathcal{R} ?
(b) (i) Define the composition $f \circ g$ of any two functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ and $g: \mathbb{R} \longrightarrow \mathbb{R}$.
(ii) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ and $g: \mathbb{R} \longrightarrow \mathbb{R}$ be the functions defined by $f(x)=\sin x$ and $g(x)=x^{2}+2$ for all $x \in \mathbb{R}$. Determine $(f \circ g)(x)$ and $(g \circ f)(x)$. [4]

