UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATIONS 2015/2016

B.Sc. / B.Ed. / B.A.S.S. II

TITLE OF PAPER	:	FOUNDATIONS OF MATHEMATICS
COURSE NUMBER	:	M231
TIME ALLOWED	:	THREE (3) HOURS
INSTRUCTIONS	:	 THIS PAPER CONSISTS OF <u>SEVEN</u> QUESTIONS. ANSWER <u>ALL</u> QUESTIONS IN SECTION A. ANSWER ANY <u>THREE</u> QUESTIONS IN SECTION B.
SPECIAL REQUIREMENTS	:	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

SECTION A

QUESTION 1

(a) What do you understand by the following?

(i) Universal Instantiation;	[3]
(ii) Universal Generalization;	[3]
(iii) Existential Instantiation;	[3]
(iv) Existential Generalization.	[3]
(b) State the Pigeonhole Principle.	[2]
(c) State the Principle of Mathematical Induction II.	[2]
(c) State the Principle of Strong Mathematical Induction.	[2]
(d) State the Fundamental Theorem of Arithmetic.	[2]

QUESTION 2

- (a) (i) Suppose you want to show that $A \implies B$ is false, where A and B are statements. How should you do this? What should you try to show about the truth of A and B?. [2]
 - (ii) Apply your answer of part (i) to show that the statement "If x is a real number that satisfies $-3x^2 + 2x + 8 = 0$, then x > 0" is false. [3]
- (b) For each of the following, write the *converse* and the *contrapositive*:
 - (i) If n is an integer for which n^2 is even, then n is even. [3]
 - (ii) Suppose that t is an angle between 0 and π . If t satisfies $\sin(t) = \cos(t)$, then $t = \frac{\pi}{4}$. [3]
- (c) Write the negation of the following definition:

The function f of one variable is a *convex function* if and only if for all real numbers x and y and for all real numbers t with $0 \le t \le 1$, it follows that $f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y)$.

[9]

SECTION B

QUESTION 3

- (a) Prove that if $A \Rightarrow B$, $B \Rightarrow C$, and $C \Rightarrow A$, then A is equivalent to B and A is equivalent to C. [11]
- (b) Determine the following sets:
 - (i) $\{m \in \mathbb{N} : \exists n \in \mathbb{N} \text{ with } m \le n\};$ [2]

(ii)
$$\{m \in \mathbb{N} : \forall n \in \mathbb{N} \text{ we have } m \le n\}.$$
 [2]

(c) Let a be an algebraic number and let r be a rational number. Show that ra is an algebraic number.
 [5]

QUESTION 4

- (a) Prove that between any two distinct irrational numbers, there is a rational number and an irrational number. [10]
- (b) Define the following:
 - (i) Fallacy of affirming the conclusion; [2]
 - (ii) Fallacy of denying the antecedent. [2]
- (c) Using truth tables, analyze the following argument and state whether it is valid or invalid

"All Germans are Europeans. My neighbor is not a German. Therefore my neighbor is not a European." [6]

QUESTION 5

- (a) Describe a modified induction procedure that could be used to prove statements of the form:
 - (i) For all integers n ≤ k, P(n) is true, where P(n) is a statement containing the integer n. [3]
 - (ii) For all integers n, P(n), where P(n) is as in Part (i). [4]
 - (iii) For every positive odd integer, something happens. [3]
- (b) For all non-negative integers n define the number u_n inductively as

$$u_0 = 0,$$

 $u_{k+1} = 3u_k + 3^k \quad \text{for } k \ge 0.$

Prove that $u_n = n3^{n-1}$ for all non-negative integers n. [4]

(c) If f(n) = 3²ⁿ + 7, where n is a natural number, show that f(n + 1) - f(n) is divisible by 8. Hence prove by induction that 3²ⁿ + 7 is divisible by 8.

QUESTION 6

- (a) Let p_1 and p_2 be distinct prime numbers. Prove that the real numbers $\sqrt{p_1} + \sqrt{p_2}$ and $\sqrt{p_1} - \sqrt{p_2}$ are irrational. [10]
- (b) Prove that the square root of a natural number is rational if and only if the natural number is a perfect square. [10]

QUESTION 7

- (a) (i) Define an equivalence relation.
 - (ii) Show that the relation

$$\mathcal{R} = \{(x,y) \in \mathbb{Z} imes \mathbb{Z} : x \equiv y \pmod{2}\}$$

is an equivalence relation. What are the equivalence classes of \mathcal{R} ? [12]

- (b) (i) Define the composition $f \circ g$ of any two functions $f : \mathbb{R} \longrightarrow \mathbb{R}$ and $g : \mathbb{R} \longrightarrow \mathbb{R}$. [2]
 - (ii) Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ and $g : \mathbb{R} \longrightarrow \mathbb{R}$ be the functions defined by $f(x) = \sin x$ and $g(x) = x^2 + 2$ for all $x \in \mathbb{R}$. Determine $(f \circ g)(x)$ and $(g \circ f)(x)$. [4]

END OF EXAMINATION