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SECTION A 

QUESTION 1 

• 
(a) What do you understand by the following? 

(i) Universal Instantiation; 

(ii) Universal Generalization; 

(iii) Existential Instantiation; 

(iv) Existential Generalization. 

[3] 

[3J 

[3] 

[3] 

(b) State the Pigeonhole Principle. [2] 

(c) State the Principle of Mathematical Induction II. [2J 

(c) State the Principle of Strong Mathematical Induction. [2] 

( d) State the Fundamental Theorem of Arithmetic. [2] 



QUESTION 2 

(a) 	 (i) Suppose you want to show that A ===} B is false, where A and Bare 

statements. How should you do this? What should you try to show about 

the truth of A and B? [2]• 
(ii) 	Apply your answer of part (i) to show that the statement "If x is a real 

number that satisfies -3x2 + 2x + 8 = 0, then x > 0" is false. [3] 

(b) For each of the following, write the converse and the contmpositive: 

(i) 	 If n is an integer for which n2 is even, then n is even. [3] 

(ii) 	Suppose that t is an angle between 0 and 7f'. If t satisfies sin(t) cos(t) , 

then t = ~. [3] 

(c) Write the negation of the following definition: 

The function f of one variable is a convex function if and only if for 

all real numbers x and y and for all real numbers t with 0 ~ t :::; 1, it 

follows that f(tx + (1 t)y) ~ tf(x) (1 - t)f(y). 

[9] 



SECTION B 


QUESTION 3 


(a) Prove that if A:::} B, B :::} C, and C:::} A, then A is equivalent to B and A is 

equivalent to C. [11] 

(b) Determine the following sets: 

(i) {mEN:3nENwithm~n}; [2] 

(ii) {mEN:'tfnENwehavem~n}. [2] 

(c) 	 Let a be an algebraic number and let r be a rational number. Show that ra is 

an algebraic number. [5] 

QUESTION 4 

(a) 	 Prove that between any two distinct irrational numbers, there is a rational 

number and an irrational number. [10] 

(b) Define the following: 

(i) 	 Fallacy of affirming the conclusion; [2] 

(ii) 	 Fallacy of denying the antecedent. [2] 

(c) 	 Using truth tables, analyze the following argument and state whether it is valid 

or invalid 

"All Germans are Europeans. 

My neighbor is not a German. 

Therefore my neighbor is not a European." 	 [6] 



QUESTION 5 

(a) Describe a modified induction procedure that could be used to prove statements 

of the form: 

• 	 (i) For all integers n ::; k, P(n) is true, where P(n) is a statement containing 

the integer n. [3] 

(ii) For all integers n, P(n), where P(n) is as in Part (i). 	 [4] 

(iii) 	 For every positive odd integer, something happens. [3] 

(b) For all non-negative integers n define the number Un ,inductively as 

for k :;:::: O. 

Prove that Un = n3n - 1 for all non-negative integers n. 	 [4] 

32n(c) 	 If f(n) 7, where n is a natural number, show that f(n + 1) - f(n) is 

divisible by 8. Hence prove by induction that 32n + 7 is divisible by 8. [6] 

QUESTION 6 

(a) Let PI and P2 be distinct prime numbers. Prove that the real numbers Jfii.+$2 

and Jfii. $2 are irrational. [10] 

(b) Prove 	that the square root of a natural number is rational if and only if the 

natural number is a perfect square. [10] 



QUESTION 7 

• 

(a) (i) Define an equivalence relation. 

(ii) Show that the relation 

R = {(x,y) E Z x Z: x = y (mod 2)} 

[2] 

is an equivalence relation. What are the equivalence classes of R? [12J 

(b) (i) Define the composition fog of any two functions f : JR --t JR and 

9 : JR --t JR. [2J 

(ii) Let f : JR --t JR and 9 : JR --t JR be the functions defined by f(x) sin x 

and g(x) = x2 + 2 for all x E JR. Determine (j 0 g)(x) and (g 0 f)(x). [4] 

END OF EXAMINATION 


