University of Swaziland

Final Examination, December 2015

B.A.S.S., B.Sc, B.Eng, B.Ed

Title of Paper : Numerical Analysis I

Course Number : M311

<u>**Time Allowed</u>** : Three (3) Hours</u>

Instructions

- 1. This paper consists of TWO sections.
 - a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.
 - b. SECTION B: 60 MARKS Answer ANY THREE questions. Submit solutions to ONLY THREE questions in Section B.
- 2. Each question in Section B is worth 20%.
- 3. Show all your working.

4. Non programmable calculators may be used (unless otherwise stated).

5. Special requirements: None.

This paper should not be opened until permission has been given by the invigilator.

1

SECTION A: ANSWER ALL QUESTIONS

Question 1

- (a) (i) Derive the formula used with the Bisection method to find the minimum number of iterations, n to achieve a certain desired accuracy ϵ . [5]
 - (ii) Give two advantages of the Bisection method. [4]
 - (iii) Give the graphical derivation of the Newton-Raphson iteration scheme. [6]
 - (iv) Give one advantage of the Newton-Raphson method over the Bisection method.
- (b) (i) Determine the linear Lagrange interpolating polynomial that passes through the points (2,4) and (5,1). [6]
 - (ii) Given the data below, construct a table for the divided differences. Do not give the polynomial.

i	0	1	2
x_i	1.0	1.3	1.6
$f(x_i)$	0.7651977	0.6200860	0.4554022

[6]

- (iii) Suppose $f(x) = \sin x$ is approximated by an interpolating polynomial $P_n(x)$ of degree 5 in [0 1]. Estimate the absolute error $|f(x) P_n(x)|$ for any $x \in [0 1]$. [6]
- (c) (i) How can the function, $f(x) = \frac{1}{\sqrt{x^2 + 1} x}$, for large number like 10^8 , be re-written to avoid problems due to loss of precision?. [2]
 - (ii) In applying the quadratic formula to find the roots of the equation

$$x^2 + 62.10x + 1 = 0,$$

which root will present problems of loss of significance? Support your answer. [4]

 $\mathbf{2}$

SECTION B: ANSWER ANY 3 QUESTIONS

Question 2

(a) List all the floating point numbers that can be expressed in the form

$$x = \pm (0.b_1b_2)_2 \times 2^k, \quad k, b_1, b_2, \in \{0, 1\}.$$

[8]

- (b) Based on the above computer number set, give examples of numbers that may cause
 - (i) Overflow. [2]
 - (ii) Underflow. [2]
- (c) Determine the machine representation in single precision on a 32-bit word length computer for -0.375. [8]

Question 3

Let $f(x) = x - e^{-x}$.

- (a) Show that f(x) has exactly one root in [0, 1]. [5]
- (b) Compute an approximation to the root by taking four (4) steps of the **Bisection method**. [8]
- (c) How many iterations would be required to locate this zero to a tolerance of 10^{-5} ? [3]
- (d) Compute an approximation to the root by taking three (3) steps of the Newton's method starting with $x_0 = 0.5$ [4]

 $\mathbf{3}$

Question 4

- (a) Suppose that f(-1) = 3, f(0) = 4, and f(2) = 5. Find the Lagrange interpolating polynomial which interpolates these values, and use it to estimate f'(0). [10]
- (b) Consider the points $x_0 = 1$, $x_1 = 1.5$, and $x_2 = 2.5$ for a function f(x). The divided differences are $f[x_2] = 5$, $f[x_1, x_2] = 15$ and $f[x_0, x_1, x_2] = 35$. Use this information to construct the complete divided differences table for the given points. [10]

Question 5

- (a) Consider the integral $\int_0^{\pi} \sin x \, dx$. Suppose we wish to integrate it numerically with an error of magnitude less than 10^{-4} . Determine the values of h and n needed if we wish to use the composite **Trapezoidal** rule? [6]
- (b) Evaluate $\int_0^2 e^{-2x} dx$ using the Simpson's rule with n = 4. [6]
- (c) Find the coefficients a, b and c for the following three-point Gaussian quadrature rule;

$$\int_{-1}^{1} f(x) \, dx \approx af\left(-\sqrt{\frac{3}{5}}\right) + bf(0) + cf\left(\sqrt{\frac{3}{5}}\right).$$
[8]

Question 6

Consider the following system of equations.

$$2x_1 - x_2 = 1$$

-x_1 + 3x_2 - x_3 = 8
- x_2 + 2x_3 = -5

- (a) Re-arrange the equations to derive the Jacobi iterative scheme. Find $\mathbf{X}^{(1)}$ and $\mathbf{X}^{(2)}$, starting with the zero initial vector. [10]
- (b) Repeat step (a) for the Gauss-Seidel iteration. [10]