University of Swaziland

Supplementary Examination, July 2016

B.A.S.S. , B.Sc, B.Eng, B.Ed

Title of Paper : Numerical Analysis I
Course Number : M311
Time Allowed : Three (3) Hours
Instructions

1. This paper consists of TWO sections.
a. SECTION A(COMPULSORY): 40 MARKS

Answer ALL QUESTIONS.
b. SECTION B: 60 MARKS

Answer ANY THREE questions.
Submit solutions to ONLY THREE questions in Section B.
2. Each question in Section B is worth 20%.
3. Show all your working.
4. Non programmable calculators may be used (unless otherwise stated).
5. Special requirements: None.

This paper should not be opened until permission has been given BY THE INVIGILATOR.

SECTION A: ANSWER ALL QUESTIONS

Question 1

(a) (i) Convert 1678 to its binary equivalent.
(ii) Determine the machine representation in single precision on a $32-$ bit word length computer (Marc-32) for 7712.
(iii) How can the function $f(x)=e^{x}-x-1$, near $x=0$, be re-written to avoid problems due to loss of precision?
(b) (i) Consider the equation $x-x^{1 / 3}-2=0$. Given initial value $x_{0}=3$, use Newton method to find x_{k}, where $k=1,2,3,4$.
(ii) Let $f(x)=x^{2}-a$. Show that the Newton Method leads to the recurrence

$$
x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right) .
$$

(iii) Do three steps of the Secant Method for $f(x)=x^{3}-2$, using $x_{0}=0$ and $x_{1}=1$.
(c) (i) What is polynomial interpolation?
(ii) State the Theorem used to estimate the error for polynomial interpolation.
(ii) Determine the linear Lagrange interpolating polynomial that passes through the points $(2,4)$ and $(5,1)$.
(ii) Given the data below, construct a table for the divided differences. Do not give the polynomial.

i	0	1	2
x_{i}	1.0	1.3	1.6
$f\left(x_{i}\right)$	0.7651977	0.6200860	0.4554022

SECTION B: ANSWER ANY 3 QUESTIONS

Question 2

(a) In error analysis, what does loss of significance means? Describe two ways in which loss of significance can be avoided. Give examples to support your answer.
(b) Determine the decimal number that has

$$
0-10000100-01010101100000000000000
$$

as its Marc-32 representation.
(c) List all the floating point numbers that can be expressed in the form

$$
x= \pm(0 . b)_{2} \times 2^{ \pm k}, \quad k, b \in\{0,1\}
$$

Question 3

Consider the function $f(x)=(x-2)^{2}-\ln x$ on the interval $1 \leq x \leq 2$.
(a) Prove that there is exactly one root of this equation in this interval. [6]
(b) Use four(4) steps of the Newton's method with the initial guess $x_{0}=1.5$ to find a root of $f(x)$.
(c) Use four(4) steps of the Secant method to approximate the zero of $f(x)$ using $x_{0}=1$ and $x_{1}=2$ as initial data.

Question 4

(a) Suppose that $f(x)=\cos x$. Let $x_{0}=0, x_{1}=0.6$, and $x_{2}=0.9$.
(i) Construct the Lagrange interpolating polynomial of degree at most 2.
(ii) Use the interpolating polynomial to approximate $f(0.45)$.
(iii) Find the relative error.
(b) For the following table construct the table of forward differences.

$$
\begin{array}{c|c|c|c|c|c}
x & -1 & -0.5 & 0 & 0.5 & 1 \\
\hline f(x) & 4 & 2 & 2 & 4 & 8
\end{array}
$$

[10]

Question 5

(a) Estimate the value of $\int_{0}^{1} \frac{1}{1+x^{2}} d x$ by using the Trapezoidal rule with 3 points.
(b) How many subintervals are needed to estimate $\int_{0}^{1} e^{-x^{2}} d x$ using the Trapezoidal rule with error not exceeding 0.5×10^{-5} ?
(c) Construct a quadrature rule on [04] using nodes 0,1 , and 2 .

Question 6

(a) Consider the linear system of equations

$$
\begin{aligned}
2 x_{1}-x_{2}+4 x_{3} & =21 \\
3 x_{1}+x_{2}-2 x_{3} & =-3 \\
x_{1}+4 x_{2}+x_{3} & =2 .
\end{aligned}
$$

Calculate the first two iterates of the Gauss-Seidel method to solve the linear system, using the starting values $\left(x_{1}, x_{2}, x_{3}\right)=(0,0,0)$.
(b) Repeat step (a) using the Jacobi method.

