University of Swaziland

Final Examination, 2015/2016

B.Sc. III, BASS III, B.Ed III

Title of Paper : Complex Analysis
Course Number : M313
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: None

This examination paper should not be opened until permission has been given by the invigilator.

SECTION A [40 Marks]: Answer ALL Questions

A1. (a) Represent a complex number in algebraic, trigonometric and exponential form.
(b) Show $\operatorname{lm}(i z)=$ Rez.
(c) Define and give example of an open set of complex numbers.

A2. (a) A semicircle $|z|=1, \quad R e z>0$, is transformed by a linear transformation into a semicircle $|w+2|=2$ with negative imaginary part. Find this linear transformation.
(b) Using Cauchy-Riemann equations (CRE) state the necessary conditions theorem for the function by differentiable at z_{0}.
A3. Give definition and example of
(a) entire function
(b) harmonic function.

A4. Prove that if $f(z)=u(x, y)+i v(x, y)$ is analytic in domain D then v is harmonic conjugate of u.

A5. State the
(a) Cauchy integral formula for

$$
\int_{c} \frac{f(z) d z}{z-z_{0}}
$$

(b) Taylor series theorem

A6. Classify and give examples of isolated points.

SECTION B: Answer any THREE Questions

QUESTION B1 [20 Marks]

B1. (a) Construct the line $\operatorname{Re} \frac{1}{z+2}=\frac{1}{4}$.
(b) Find and sketch the region into which the square $x=0, x=1, y=0, y=1$ is mapped by transformation $w=e^{z}$.
(c) Explain what is meant by the statement "The function $f(z)$ is continuous at z_{0}."
(d) Find the limits. Give your reasonings
(i) $\lim _{x \rightarrow-1} \frac{z-3 i}{2 z+2}$,
(ii) $\lim _{x \rightarrow \infty} \frac{2 z+i}{z+1}$.
(e) Using just the definition of derivative find f^{\prime} if
(i) $f(z)=(z-3)^{2}$,
(ii) $f(z)=l m z$.

QUESTION B2 [20 Marks]

B2. (a) Using CRE
(i) State the sufficient conditions theorem for existence of $f^{\prime}(z)$ and thus
(ii) Check if there is f^{\prime} and g^{\prime} for $f=z^{2}+3 z+3$ and $g=e^{x} e^{i v}$, respectively. Find f^{\prime} and g^{\prime}.
(b) Derive CRE in polar coordinates.
(c) Find the analytic function $f(z)=u(x, y)+i v(x, y)$, given that the imaginary part $v=3 x+2 x y$ and $f(-i)=2$.

QUESTION B3 [20 Marks]

B3. (a) Evaluate $\int_{c} \sqrt{z} d z$, where c is the upper half of the circle $|z|=3$, from $z=3$ to $\mid z=-3$.
(b) Apply Cauchy integral formula to evaluate
(i) $\int_{c} \frac{d z}{z^{2}\left(z^{2}+25\right)}$, if
$c=\{z:|z|=4=4$ in positive direction, and $|z|=2$ in negative direction. $\}$
(ii) $\int_{c} \frac{d z}{z^{2}+2 z}$, where c is a positively oriented circle $|z|=1$.
(c) State the Laurent series theorem.
(d) Expand $f(z)=\frac{1}{1+z}$ in Maclaurin series.

QUESTION B4 [20 Marks]

B4. (a) Expand in Laurent series
(i) $f(z)=\frac{e^{z}}{z}$, near $z_{0}=0$,
(ii) $f(z)=\frac{1}{(1-z)(2+z)}$, in power of z in the domain $|z|<1$.
(b) Consider $f(z)=\frac{z-\sin z}{z}$
(i) Find residue at $z=0$,
(ii) and thus evaluate $\int_{c}(z) d z$, where c is a positively oriented circle $|z|=1$.
(c) Consider $f(z)=\frac{e^{2 z}}{(z-1)^{2}}$.
(i) Show that $z=1$ is a pole. Find its order.
(ii) Find residue at $z=1$.

QUESTION B5 [20 Marks]

B5. (a) Consider $f(z)=\frac{e^{z}-1}{z}$.
(i) Show that $z=0$ is a removable singular point.
(ii) Let $g(z)=f(z)$ for $z \neq 0$.

Define $g(0)$ to make $g(z)$ an entire function.
(b) Apply the Residue theorem to evaluate
(i) $\int_{c} \frac{d z}{z^{2}+4}$, where c is a positively oriented circle $|z+i|=2$.
(ii) $\int_{0}^{\infty} \frac{\cos x}{x^{2}+a^{2}} d x, \quad a>0$.

