UNIVERSITY OF SWAZILAND

FINAL EXAMINATION, 2015/2016

B.Sc. III, BASS III, B.Ed III

Title of Paper : Complex Analysis

Course Number : M313

Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO (2) Sections:

a. SECTION A (40 MARKS)

– Answer **ALL** questions in Section A.

b. SECTION B

- There are FIVE (5) questions in Section B.

- Each question in Section B is worth 20 Marks.

- Answer ANY THREE (3) questions in Section B.

- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: None

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: Answer ALL Questions

A	(b) Show $lm(iz) = Rez$.	
		(999
	(c) Define and give example of an open set of complex numbers.	(2,2,3
A	2. (a) A semicircle $ z = 1$, $Rez > 0$, is transformed by a linear transformation into a semicircle $ w+2 = 2$ with negative imaginary part. Find this linear transformation.	
	(b) Using Cauchy-Riemann equations (CRE) state the necessary conditions theorem for the function by differentiable at z_0 .	(5,5)
A	3. Give definition and example of	
	(a) entire function	
	(b) harmonic function.	(2,2)
A	4. Prove that if $f(z) = u(x, y) + iv(x, y)$ is analytic in domain D then y is harmonic	

1.....

- A4. Prove that if f(z) = u(x, y) + iv(x, y) is analytic in domain D then v is harmonic conjugate of u. (7)
- A5. State the
 - (a) Cauchy integral formula for

.

$$\int_c \frac{f(z)dz}{z-z_0}$$

- (b) Taylor series theorem
- A6. Classify and give examples of isolated points.

SECTION B: Answer any THREE Questions

QUESTION B1 [20 Marks]

B1.	(a) Construct the line $Re\frac{1}{z+2} = \frac{1}{4}$.		(4)
	(b) Find and sketch the region into which the square $x = 0, x = 1, y = 0, y$	= 1 is	

- (b) Find and sketch the region into which the square x = 0, x = 1, y = 0, y = 1 is mapped by transformation $w = e^z$. (4)
- (c) Explain what is meant by the statement "The function f(z) is continuous at z_0 ." (2)
- (d) Find the limits. Give your reasonings

(i)
$$\lim_{x \to -1} \frac{z - 3i}{2z + 2},$$

(ii)
$$\lim_{x \to \infty} \frac{2z + i}{z + 1}.$$
 (2,3)

(e) Using just the definition of derivative find f' if
(i) f(z) = (z-3)²,

(ii) f(z) = lmz.

(3,3) (6)

(2,3)

QUESTION B2 [20 Marks]

- B2. (a) Using CRE
 - (i) State the sufficient conditions theorem for existence of f'(z) and thus (ii) Check if there is f' and g' for $f = z^2 + 3z + 3$ and $g = e^x e^{iv}$, respectively. Find f' and g'. (3,3)
 - (b) Derive CRE in polar coordinates.
 - (c) Find the analytic function f(z) = u(x, y) + iv(x, y), given that the imaginary part v = 3x + 2xy and f(-i) = 2. (8)

(6)

(3,3)

QUESTION B3 [20 Marks]

B3. (a) Evaluate $\int \sqrt{z} dz$, where c is the upper half of the circle $ z = 3$, from	m $z = 3$ to
z=-3.	(6)
(b) Apply Cauchy integral formula to evaluate	
(i) $\int_c \frac{dz}{z^2(z^2+25)}$, if	
$c = \{z : z = 4 = 4 \text{ in positive direction, and } z = 2 \text{ in negative direction}$	i.}
(ii) $\int_c \frac{dz}{z^2 + 2z}$, where c is a positively oriented circle $ z = 1$.	(3,5)
(c) State the Laurent series theorem.	(3)
(d) Expand $f(x) = \frac{1}{1}$ in Maclaurin series	(4)

(d) Expand
$$f(z) = \frac{1}{1+z}$$
 in Maclaurin series. (4)

QUESTION B4 [20 Marks]

B4. (a) Expand in Laurent series

- (i) $f(z) = \frac{e^z}{z}$, near $z_0 = 0$, (ii) $f(z) = \frac{1}{(1-z)(2+z)}$, in power of z in the domain |z| < 1. (3,4)
- (b) Consider $f(z) = \frac{z \sin z}{z}$
- (i) Find residue at z = 0,
- (ii) and thus evaluate $\int_{c} (z) dz$, where c is a positively oriented circle |z| = 1. (5,2)
- (c) Consider $f(z) = \frac{e^{2z}}{(z-1)^2}$.
- (i) Show that z = 1 is a pole. Find its order.
- (ii) Find residue at z = 1.

QUESTION B5 [20 Marks]

B5. (a) Consider
$$f(z) = \frac{e^z - 1}{z}$$
.

(i) Show that z = 0 is a removable singular point.

(ii) Let
$$g(z) = f(z)$$
 for $z \neq 0$.

Define g(0) to make g(z) an entire function.

(b) Apply the Residue theorem to evaluate

(i)
$$\int_{c} \frac{dz}{z^{2}+4}$$
, where c is a positively oriented circle $|z+i| = 2$.
(ii) $\int_{0}^{\infty} \frac{\cos x}{x^{2}+a^{2}} dx$, $a > 0$. (6,8)

(4,2)

END OF EXAMINATION PAPER.