UNIVERSITY OF SWAZILAND

MAIN EXAMINATION, 2015/2016

BASS III, BED III, BSC III

Title of Paper : ABSTRACT ALGEBRA I
Course Number : M323
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of SIX (6) questions in TWO sections.
2. Section A is COMPULSORY and is worth 40%. Answer ALL questions in this section.
3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
4. Show all your working.
5. Start each new major question (A1, B2 - B6) on a new page and clearly indicate the question number at the top of the page.
6. You can answer questions in any order.
7. A formula sheet is provided on the last page.

Special Requirements: NONE

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [40 Marks]

(a) Define each of the following.
i. A relation from a set X into a set Y.
ii. A function from a set X into a set Y.
iii. An equivalence relation on a set X.
(b) Use the Euclidean algorithm to find $\operatorname{gcd}(512,320)$ and hence find integers s and t such that

$$
\operatorname{gcd}(512,320)=512 s+320 t
$$

(c) i. Give the definition of a group.
ii. Let $S=\mathbb{R} \backslash\{-1\}$ and define a binary operation $*$ on S by

$$
a * b=a+b+a b
$$

where $a+b$ is usual addition and $a b$ is usual multiplication. Show that $(S, *)$ is a group.
(d) Let $\alpha=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 8 & 1 & 7 & 5 & 3 & 4 & 2\end{array}\right)$ and $\beta=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 1 & 8 & 3 & 4 & 5 & 2 & 6\end{array}\right)$.
i. Express α and β as products of disjoint cycles.
ii. Express α and β as products of transpositions and indicate whether they are even or odd permutations.
ii. Compute $\beta^{-1} \alpha$.

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]

(a) Let $G=\{x \in \mathbb{Q}: x>0\}$. Define a binary operation * on G by

$$
a * b=\frac{a b}{2} \quad \text { for all } a, b \in G
$$

Show that $(G, *)$ is a group.
(b) Let $(G, *)$ be a group and let $a, b, c \in G$. Prove each of the following.
i. $(a * b)^{-1}=b^{-1} * a^{-1}$,
ii. If $a * b=a * c$, then $b=c$.

QUESTION B3 [20 Marks]

(a) Prove: A subset H of a group G is a subgroup of G if and only if $H \neq \varnothing$ and for $g, h \in H, g * h^{-1} \in H$.
(b) Let H be the subset

$$
\left\{\rho_{0}=(1), \rho_{1}=(123), \rho_{2}=(132)\right\}
$$

of the symmetric group S_{3}.
i. Show that H is a subgroup of S_{3}.
ii. Show that H is cyclic.

QUESTION B4 [20 Marks]

(a) Define a relation \sim on \mathbb{Z} by $m \sim n$ if and only if $m \equiv n(\bmod 4)$.
i. Show that \sim is an equivalence relation on \mathbb{Z}.
ii. Describe the partition given by \sim.
(b) Let $a, b, m \in \mathbb{Z}$. Show that if $\operatorname{gcd}(a, m)=1$ and $\operatorname{gcd}(b, m)=1$, then $\operatorname{gcd}(a b, m)=1$.

QUESTION B5 [20 Marks]

(a) Prove that every cyclic group is abelian.
(b) Find the number of generators of the cyclic group \mathbb{Z}_{42} and then list them.
(c) Prove that every group of prime order is cyclic.

QUESTION B6 [20 Marks]

(a) Find all the subgroups of \mathbb{Z}_{18} and give a lattice diagram.
(b) Let $\phi: G \rightarrow H$ be a group isomorphism and let e be the identity of G. Prove that $\phi(e)$ is the identity in H and that $[\phi(a)]^{-1}=\phi\left(a^{-1}\right)$.

