UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION, 2015/2016

BASS III, BED III, BSC III

Title of Paper : ABSTRACT ALGEBRA I
Course Number : M323

Time Allowed : Three (3) Hours

Instructions

1. This paper consists of SIX (6) questions in TWO sections.
2. Section A is COMPULSORY and is worth 40%. Answer ALL questions in this section.
3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
4. Show all your working.
5. Start each new major question (A1, B2 - B6) on a new page and clearly indicate the question number at the top of the page.
6. You can answer questions in any order.

Special Requirements: NONE

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [40 Marks]

(a) Define each of the following.
i. A relation from a set X into a set Y.
ii. A function from a set X into a set Y.
iii. An equivalence relation on a set X.
(b) Use the Euclidean algorithm to find $\operatorname{gcd}(126,45)$ and hence find integers s and t such that

$$
\operatorname{gcd}(126,45)=126 s+45 t
$$

(c) i. Give the definition of a group.
ii. Let

$$
G=\left\{\left(\begin{array}{ll}
a & 0 \\
b & c
\end{array}\right): a, b, c \in \mathbb{Q} \text { and } a c \neq 0\right\} .
$$

Show that G with matrix multiplication is a group.
(d) Let $A=\{1,2,3,4,5,6,7,8\}$ and define a relation R on A by

$$
a R b \text { if } 3 \mid(a-b)
$$

for $a, b \in A$.
i. List the elements of R.
ii. Determine whether or not R is an equivalence relation on A.
(e) Let $a, b, c \in \mathbb{Z}$. Suppose $\operatorname{gcd}(a, c)=1$ and $c \mid a b$. Prove that $c \mid b$.

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]

(a) Consider the following permutations in S_{6}

$$
\alpha=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 1 & 4 & 5 & 6 & 2
\end{array}\right) \text { and } \beta=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 4 & 1 & 3 & 6 & 5
\end{array}\right)
$$

Compute
i. β^{-1}
ii. β^{-2}
iii. $\alpha \beta^{-1}$
(b) Write the permutations in (a) as a product of disjoint cycles in S_{6} and then as products of transpositions. Indicate whether the permutation is even or odd.
(c) Prove that every cyclic group is abelian.

QUESTION B3 [20 Marks]

(a) Prove: A subset H of a group $(G, *)$ is a subgroup of G if and only if it satisfies the following conditions.

1. The identity e of G is in H.
2. For $h_{1}, h_{2} \in H, h_{1} * h_{2} \in H$.
3. For $h \in H, h^{-1} \in H$.
(b) Let G be the group of all 2×2 matrices under addition and let

$$
H=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbb{R}, a+d=0\right\}
$$

Show that H is a subgroup of G.

QUESTION B4 [20 Marks]

(a) Define a relation \sim on \mathbb{Z} by $m \sim n$ if and only if $m \equiv n(\bmod 5)$.
i. Show that \sim is an equivalence relation on \mathbb{Z}.
ii. Describe the partition given by \sim.
(b) Let a and b be integers and p a prime number. Prove that if $p \mid a b$, then either $p \mid a$ or $p \mid b$.

QUESTION B5 [20 Marks]

(a) Find the number of generators of the cyclic group \mathbb{Z}_{30} and then list them.
(b) Let $S=\mathbb{R} \backslash\{0\}$ and consider the groups $(S,+)$ and $(\mathbb{Z},+)$ where + is the usual addition. Let $G=S \times \mathbb{Z}$. Define a binary operation $*$ on G by

$$
(a, m) *(b, n)=(a b, m+n)
$$

i. Show that G is closed under $*$.
ii. Show that $(G, *)$ is a group.
(c) Prove that every group of prime order is cyclic.

QUESTION B6 [20 Marks]

(a) i. Define a group isomorphism.
ii. Let $\phi: G \rightarrow H$ be a group isomorphism and let e be the identity of G. Prove that $\phi(e)$ is the identity in H.
(b) Find all the subgroups of \mathbb{Z}_{12} and give a lattice diagram.

