UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION, 2015/2016

BASS III, BED III, BSC III

Title of Paper : ABSTRACT ALGEBRA I

Course Number : M323

Time Allowed : Three (3) Hours

Instructions

- 1. This paper consists of SIX (6) questions in TWO sections.
- 2. Section A is **COMPULSORY** and is worth 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1, B2 B6) on a new page and clearly indicate the question number at the top of the page.
- 6. You can answer questions in any order.

Special Requirements: NONE

This examination paper should not be opened until permission has been given by the invigilator.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [40 Marks]

- (a) Define each of the following.
 - i. A relation from a set *X* into a set *Y*.
 - ii. A function from a set *X* into a set *Y*.
 - iii. An equivalence relation on a set *X*.
- (b) Use the Euclidean algorithm to find gcd(126, 45) and hence find integers s and t such that

$$gcd(126, 45) = 126s + 45t.$$

(c) i. Give the definition of a group.

ii. Let

$$G = \left\{ \begin{pmatrix} a & 0 \\ b & c \end{pmatrix} : a, b, c \in \mathbb{Q} \text{ and } ac \neq 0 \right\}.$$

Show that *G* with matrix multiplication is a group.

(d) Let $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$ and define a relation *R* on *A* by

$$aRb$$
 if $3 \mid (a-b)$

for $a, b \in A$.

i. List the elements of *R*.

ii. Determine whether or not *R* is an equivalence relation on *A*.

(e) Let $a, b, c \in \mathbb{Z}$. Suppose gcd(a, c) = 1 and $c \mid ab$. Prove that $c \mid b$.

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]

(a) Consider the following permutations in S_6

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix}^{\perp} \text{ and } \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}^{\perp}$$

Compute

- i. β^{-1}
- ii. β^{-2}
- iii. $\alpha\beta^{-1}$
- (b) Write the permutations in (a) as a product of disjoint cycles in S_6 and then as products of transpositions. Indicate whether the permutation is even or odd.
- (c) Prove that every cyclic group is abelian.

QUESTION B3 [20 Marks]

- (a) Prove: A subset H of a group (G, *) is a subgroup of G if and only if it satisfies the following conditions.
 - 1. The identity e of G is in H.
 - 2. For $h_1, h_2 \in H$, $h_1 * h_2 \in H$.
 - 3. For $h \in H$, $h^{-1} \in H$.
- (b) Let G be the group of all 2×2 matrices under addition and let

$$H = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R}, a + d = 0 \right\}.$$

Show that *H* is a subgroup of *G*.

TURN OVER

I

[{

QUESTION B4 [20 Marks]

- (a) Define a relation \sim on \mathbb{Z} by $m \sim n$ if and only if $m \equiv n \pmod{5}$.
 - i. Show that \sim is an equivalence relation on \mathbb{Z} .
 - ii. Describe the partition given by \sim . [4
- (b) Let *a* and *b* be integers and *p* a prime number. Prove that if $p \mid ab$, then either $p \mid a$ or $p \mid b$. [8

QUESTION B5 [20 Marks]

- (a) Find the number of generators of the cyclic group \mathbb{Z}_{30} and then list them. [5
- (b) Let $S = \mathbb{R} \setminus \{0\}$ and consider the groups (S, +) and $(\mathbb{Z}, +)$ where + is the usual addition. Let $G = S \times \mathbb{Z}$. Define a binary operation * on G by

$$(a,m) * (b,n) = (ab,m+n).$$

- i. Show that *G* is closed under *. [2]
- ii. Show that (G, *) is a group. [8]
- (c) Prove that every group of prime order is cyclic. [5]

QUESTION B6 [20 Marks]

(a)	i. Define a group isomorphism.	[3]
	ii. Let $\phi : G \to H$ be a group isomorphism and let <i>e</i> be the identity of <i>G</i> . Prove that $\phi(e)$ is the identity in <i>H</i> .	[7]
(b)]	Find all the subgroups of \mathbb{Z}_{12} and give a lattice diagram.	[10
	END OF EXAMINATION PAPER	