UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION, 2015/2016

BASS III, B.Ed (Sec.) III, B.Sc. III

Title of Paper : Real Analysis
Course Number : M331
Time Allowed : Three (3) Hours
\section*{Instructions}

1. This paper consists of SIX (6) questions in TWO sections.
2. Section A is COMPULSORY and is worth 40%. Answer ALL questions in this section.
3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
4. Show all your working.
5. Start each new major question (A1, B2 - B6) on a new page and clearly indicate the question number at the top of the page.
6. You can answer questions in any order.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [40 Marks]

(a) Let $A=\left\{x \in \mathbb{R}: x^{2}-x-1<0\right\}$. Find $\sup (A)$ and $\inf (A)$. Does $\min (A)$ exist? Does $\max (A)$ exist?
(b) i. Define a Cauchy sequence.
ii. State the Cauchy convergence criterion for a sequence.
ii. Define a Cauchy series.
(c) i. Given a bounded function f and a partition P of the interval $[a, b]$, give the definitions of the Riemmann upper sum $U(P, f)$ and the Riemann lower sum $L(P, f)$ of f, being careful to explain each symbol used.
ii. State the Riemann integrability criterion.
iii. Prove or disprove: If f is integrable on $[a, b]$, then f is continuous on $[a, b]$.
(d) i. Explain what it means to say that a series $\sum x_{n}$ converges absolutely.
ii. Prove or disprove: If a series is convergent, then it converges absolutely.
(e) i Give the ε, δ definition for a function f to have the limit L as x approaches a number c.
ii. Explain what it means to say a function f is differentiable at c.
(f) State the Intermediate Value Theorem.

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]

(a) Show that for $x, y \in \mathbb{R}$, the following inequality

$$
x y \leq \frac{x^{2}+y^{2}}{2}
$$

holds, with equality if $x=y$. Hence deduce the arithmetic-geometric mean inequality

$$
\sqrt{a b} \leq \frac{a+b}{2}
$$

(b) Prove the reverse triangle inequality

$$
||x|-|y|| \leq|x-y| \quad \text { for } x, y \in \mathbb{R}
$$

(c) Use the order axioms to show that $n^{2}>n$ for all $n \in \mathbb{N}$ with $n>1$.
(d) Prove that there is no rational number x such that $x^{2}=2$.

QUESTION B3 [20 Marks]

(a) Use the ε, N definition to show that

$$
\lim _{n \rightarrow \infty} \frac{n+1}{n}=1
$$

(b) Let $\left\{x_{n}\right\}$ be the sequence defined recursively by

$$
x_{1}=2, \quad x_{n+1}=x_{n}-\frac{x_{n}^{2}-2}{2 x_{n}}
$$

i. Use mathematical induction to show that $x_{n} \geq 0$ for all $n \in \mathbb{N}$.
ii. Use mathematical induction to show that the sequence $\left\{x_{n}\right\}$ is nonincreasing.
iii. Determine whether the sequence converges or not. Give reasons for your answer.

QUESTION B4 [20 Marks]

(a) Show that the equation

$$
\ln x=2-x
$$

has a solution in the interval $[1, e]$.
(b) Let $f:[a, b] \rightarrow \mathbb{R}$ be a function. Explain what each of the following statements means.
i. f is right-differentiable at $c \in[a, b)$.
ii. f is left-differentiable at $c \in(a, b]$.
(c) Give an example of a function that is left-differentiable and right-differential at a point c in its domain but not differentiable at c.
(d) Let $f(x)=10 x-9$. Use an ε, δ argument to show that $\lim _{x \rightarrow 2} f(x)=11$.

QUESTION B5 [20 Marks]

(a) Let $f(x)=x^{2}$. Show that f is uniformly continuous on $[0,1]$.
(b) Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by $f(x)=x^{3}$ and let $P=\{0,0.1,0.4,1\}$. Find $U(P, f)$ and $L(P, f)$.
(c) Let $f:[-1,1] \rightarrow \mathbb{R}$ be defined by $f(x)= \begin{cases}0 & \text { if } x \leq 0, \\ 1 & \text { if } x>0 .\end{cases}$

Show that f is Riemann integrable and find $\int_{-1}^{1} f(x) d x$.

QUESTION B6 [20 Marks]

(a) Prove or disprove: If $\sum x_{n}$ and $\sum y_{n}$ are convergent series, then $\sum x_{n} y_{n}$ is convergent.
(b) Prove: Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ convergent sequences. Then

$$
\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=\lim _{n \rightarrow \infty} x_{n}+\lim _{n \rightarrow \infty} y_{n} .
$$

(c) Prove: If the series $\sum_{n=1}^{\infty} x_{n}$ converges absolutely, then it is convergent.

