UNIVERSITY OF SWAZILAND

FINAL EXAMINATION, 2015/2016

B.Sc./ B.Ed./ BASS III

Title of Paper : Dymanics II

Course Number : M355

Time Allowed : Three (3) Hours

Instructions

- 1. This paper consists of TWO (2) Sections:
 - a. SECTION A (40 MARKS)
 - Answer **ALL** questions in Section A.
 - b. SECTION B
 - There are FIVE (5) questions in Section B.
 - Each question in Section B is worth 20 Marks.
 - Answer ANY THREE (3) questions in Section B.
 - If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.
- 2. Show all your working.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

1	A1.	Give definition and example of	
		(a) Constraint,	(2)
		(b) generalized coordinate,	(2)
		(c) scleronomic system,	(2)
		(d) conservative system	(2)
		(e) transformation equation	(2)
ł	A.2	A particle of mass M is located on a smooth desk and is attached to a weightless spring of stiffness c .	
		(a) Derive Lagrange's equation,	(2)
		(b) Solve it,	(2)
		(c) Introduce generalized momentum,	(2)
		(d) Construct Hamiltonian,	(2)
		(e) Derive Hamilston's equations	(2)
	A3.	For a certain system the kinetic energy T and potential energy Π are given by $2T = ml^2(\dot{x}^2 + \dot{y}^2 \sin^2 x), \Pi = -mgl \cos x.$	
		Show that coordinate y is cyclic.	(3)
	A4.	Give at least one condition for canonical transformation.	(3)
	A5.	Consider a dynamic variable $A(q, p, t)$ and let $H(q, p, t)$ be a Hamiltonian of a system. Prove that $dA = \partial A$	
		$\frac{dt}{dt} = \frac{\partial H}{\partial t} + [A, H]$ in the usual notations.	(4)
	A6.	Define,	
		(a) functional,	
		(b) variation of a function.	(2,2)
	A7.	Find the extremals of	
		$v[y,(x)] = \int_0^1 [(y')^2 + yy'] dx, \qquad y(0) = 2, y(1) = 3.$	(4)
A	A8.	For the functional	
		$v[y_1, y_2, \cdots, y_n] = \int_{x_0}^{x_1} F(x, y_1, y_2, \cdots, y_n, y_1', y_2', \cdots, y_n') dx$	
		write Euler's equation.	(2)

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B1 [20 Marks]

B1. (a) Prove the Interchange of d and ∂ Lemma

$$\frac{d}{dt}\left(\frac{\partial \overline{r}_{\nu}}{\partial q_{i}}\right) = \frac{\partial \overline{r}_{\nu}}{\partial q_{i}}.$$
(6)

(b) Given Lagrange's equations (L.E.) in general case. Derive L.E. for conservative system. (4)

(c) Two particles of mass m_1 and m_2 are connected by a light inextensible string of length l which passes through a smooth hole in a smooth horizontal table. The mass m_2 lies on the table at a distance r from the hole. A gravitation field g acts on this system. If the mass m_1 moves only in vertical line, find the equation of motion for both masses.

(d) The Lagrangian for a certain system is given by

$$L = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) - \frac{1}{2}c(x^2 + y^2) - \frac{1}{2}c(y - x)^2.$$

Write down Lagrange's equations.

QUESTION B2 [20 Marks]

B2. (a) Prove that for holonomic, scleronomic system the following formula is valid

$$\sum_{i=1}^{n} \dot{q}_i \frac{\partial T}{\partial \dot{q}_i} = 2T.$$
⁽¹⁰⁾

(b) Derive the equation of motion for the system made up of a mathematical pendulum for which the pivot point (of negligible mass) is free to move horizontally.

(10)

QUESTION B3 [20 Marks]

- B3. (a) Using just definition of Hamiltonian H(q, p) derive Hamilton's equations. (4)
 - (b) The Lagrangian for a certain system is given in Quesiton B1(d). Find
 - (i) Generalized momenta,
 - (ii) Hamiltonian,
 - (iii) Hamilton's equations. (3,5,3)
 - (c) Derive Hamilton's equations in Poisson's formulation. (5)

QUESTION B4 [20 Marks]

B4. (a) Derive Euler's equation corresponding to the functional

$$v[y(x)] = \int_{x_0}^{x_1} F(x, y(x), y'(x)) dx, \quad y(x_0) = y_0, y(x_1) = y_1.$$
(7)

(4)

(6)

(b) Find extremals of

$$v[y(x)] = \int_0^{\frac{\pi}{2}} [(y')^2 - y^2] dx, \quad y(0) = 0, \quad y(\frac{\pi}{2}) \text{ is free}$$
(4)
(c) Let $F(y, y') = y\sqrt{1 + (y')^2}$. Construct
(i) Euler's equation,

(ii) Beltrami's identity. (5,4)

QUESTION B5 [20 Marks]

B5. (a) Find the extremals of

(i)
$$v[y(x), z(x)] = \int_0^1 (y'^2 + z'^2 + y'z') dx,$$

 $y(0) = z(0) = 0, \quad y(1) = 1, z(1) = 2.$
(ii) $v[y(x)] = \int_0^1 (y''^2 + 1) dx,$
 $y(0) = 0, y'(0) = y(1) = y'(1) = 1.$ [7,7]
(b) Write down Optimized divise solution for the following functionals

(b) Write down Ostrogradski's equation for the following functionals

(i)
$$v[z(x,y)] = \int \int_D F(x,y,z,\frac{\partial z}{\partial x},\frac{\partial z}{\partial y}) dx dy,$$

(ii) $v[z(x,y)] = \int \int_D \left[\left(\frac{\partial z}{\partial x}\right)^2 - \left(\frac{\partial z}{\partial y}\right)^2 \right] dx dy.$
(3,3)

__END OF EXAMINATION PAPER__