University of Swaziland

Final Examination 2015/2016

B.A.S.S. , B.Sc, B.Ed

Title of Paper : Numerical Analysis II
Course Number : M411
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO sections.
a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.
b. SECTION B: 60 MARKS

Answer ANY THREE questions.
Submit solutions to ONLY THREE questions in Section B.
2. Show all your working.
3. Start each question on a fresh page.
4. Non programmable calculators may be used (unless otherwise stated).
5. Special requirements: None.

This paper should not be opened until permission has been given by the invigilator.

SECTION A

A1. (a) State the Weierstrass theorem for the approximation of functions with polynomials on intervals.
(b) Let $w(x), \phi_{0}(x), \phi_{1}(x), \ldots, \phi_{n}(x)$ be functions that are defined on an interval $I \subseteq \mathbb{R}$. Precisely explain the following statements.
i. The set $\left\{\phi_{0}(x), \phi_{1}(x), \ldots, \phi_{n}(x)\right\}$ is orthogonal on I with respect to weight function $w(x)$.
ii. $\left\{\phi_{0}(x), \phi_{1}(x), \ldots, \phi_{n}(x)\right\}$ is linearly independent on I.
(c) Use the Gram-Schmidt procedure to determine the set $\left\{L_{0}(x), L_{1}(x)\right\}$ of (Laguerre) polynomials that are orthogonal on $(0, \infty)$ with respect to the weight function $w(x) \equiv e^{-x}$ and $L_{0}(x) \equiv$ 1.

A2. (a) Solve the initial value problem (IVP)

$$
y^{\prime}(x)=3 e^{-4 x}-2 y_{\digamma} \quad y(0)=1
$$

for $y(0.1)$ using one step of each of the following methods.
i. Euler method
ii. Taylor series method of order 2.
iii. Runge-Kutta method of order 2.
(b) A certain multi-step method has

$$
\rho(r)=2-3 r+r^{2} \text { and } \sigma(r)=-\frac{3}{2}+\frac{1}{2} r
$$

as its first and second characteristic polynomial respectively. State the Dahlquist Equivalence Theorem for convergence and use it to analyze the convergence of the difference equation.

A3. (a) Let Γ be the boundary of an open and connected region $\Omega \subseteq \mathbb{R}^{2}$. A boundary value problem consists of finding $u(x, y)$ satisfying

$$
\begin{aligned}
\nabla^{2} u & =0 \text { on } \Omega, \\
u & =f \text { on } \Gamma
\end{aligned}
$$

where $f(x, y)$ is a given function. Derive the five point formula for approximating u at any grid point in Ω. Be careful to explain any notation used.
(b) Let a be a constant, let $j=1,2,3, \ldots$ and $n=0,1,2, \ldots$. The upstream scheme

$$
\begin{equation*}
U_{j}^{n+1}=U_{j}^{n}-\alpha\left(U_{j}^{n}-U_{j-1}^{n}\right), \tag{1}
\end{equation*}
$$

where $\alpha=a \frac{\Delta t}{\Delta x}$, can be used for approximating the advection equation

$$
\begin{equation*}
u_{t}+a u_{x}=0 \tag{2}
\end{equation*}
$$

i. Derive equation (1).
ii. Specify the range of values of α for which the upstream scheme converges. Justify your answer.

SECTION B

B4. (a) Find a linear function $p_{1}(x)$ that approximates $\ln (x-2)$ on the closed interval [3,4] in the least squares sense.
(b) Find a linear function $p_{1}(x)$ that best fits the data

j	0	1	2	3
x_{j}	3	5	8	10
y_{j}	8.3	11.3	14.4	15.9

in the least squares sense.
B5. (a) Show that the Chebyshev polynomials $\left\{T_{0}(x), T_{1}(x), \ldots\right\}$ are orthogonal on $[-1,1]$ with respect to the weight function $\frac{1}{\sqrt{1-x^{2}}}$. [10]
(b) State the Gram-Schmidt process for orthogonal polynomials on a given interval $[a, b]$ with respect to a weight function $w(x)$. [10]

B6. Use a single step of the Runge-Kutta method of order 4 to solve the Initial Value problem

$$
\begin{equation*}
y^{\prime \prime}-3 y^{\prime}+2 y=6 e^{-x}, 0 \leq x \leq 1, y(0)=y^{\prime}(0)=2 \tag{20}
\end{equation*}
$$

for both $y(0.1)$ and $y^{\prime}(0.1)$.

B7. Consider the differential problem;

$$
\begin{aligned}
u_{t}(x, t) & =u_{x x}(x, t), 0<x<1, t>0 \\
u(0, t) & =0, u_{x}(1, t)=u(1, t)-1, t>0, \\
u(x, 0) & =\sin (\pi x), 0 \leq x \leq 1
\end{aligned}
$$

Suppose that an approximate solution to this problem is determined by replacing u_{t} with a forward difference, and that both u_{x} and $u_{x x}$ are replaced by central differences.
(a) Show that the resulting finite difference equations may be written in matrix form as

$$
\mathbf{u}^{n+1}=B \mathbf{u}^{n}+\mathbf{v}, \text { where } n=1,2, \ldots
$$

Identify the square matrix B, and the vectors \mathbf{u}_{j} and \mathbf{v}.
(b) Compute the leading terms of the truncation error for this numerical scheme.

B8. (a) Consider the boundary value problem

$$
\begin{aligned}
u_{x x}+u_{y y} & =0,0 \leq x \leq 2,0 \leq y \leq 3 \\
u(x, 0) & =x / 2, u(x, 3)=1,0 \leq x \leq 2 \\
u(0, y) & =y / 3, u(2, y)=1,0 \leq y \leq 3
\end{aligned}
$$

Use a finite difference method known as "the 5 point formula" with a uniform grid on S to approximate both $u(1,1)$ and $u(1,2)$. [10]
(b) Determine a sufficient condition for convergence of the numerical scheme

$$
\frac{U_{j}^{n+1}-U_{j}^{n}}{\Delta t}+a \frac{U_{j}^{n}-U_{j-1}^{n}}{\Delta x}=0,
$$

for approximating the advection equation

$$
u_{t}+a u_{x}=0, u(x, 0)=f(x), \text { where } a>0 \text { is given.[10] }
$$

