University of Swaziland

Final Examination, December 2015

B.A.S.S., B.Sc, B.Eng, B.Ed

 Title of Paper
 : Partial Differential Equations

 Course Number
 : M415

 Time Allowed
 : Three (3) Hours

Instructions

i,

- 1. This paper consists of TWO sections.
 - a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.
 - b. SECTION B: 60 MARKS Answer ANY THREE questions. Submit solutions to ONLY THREE questions in Section B.
- 2. Each question in Section B is worth 20%.
- 3. Show all your working.
- 4. Non programmable calculators may be used (unless otherwise stated).
- 5. Special requirements: None.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

1

SECTION A: ANSWER ALL QUESTIONS

- 1.1. Write short notes explaining the following concepts
 - (a) order of a PDE, [2]
 - (b) linearity,
 - (c) well posedness of a PDE,
 - (d) boundary conditions.
- 1.2. Determine the region in which the given partial differential equation

$$u_{xx} - \sqrt{\frac{(x-2)^2 + y^2}{8}}u_{xy} + 2u_{yy} = e^{3x}$$

is hyperbolic, parabolic or elliptic. (u = u(x, y)). [6]

- 1.3. Solve the following partial differential equations, (u = u(x, y)).
 - (a) $(2xy 1)u_x + (u 2x^2)u_y = 2(x uy),$ [6]
 - (b) $(1-x)u_x + u_y = 0.$ [7]
- 1.4. Assuming $1 + xy \neq 0$, show that $u(x,y) = F\left(\frac{x}{1+xy}\right)$ is a solution of the following PDE

$$x^2 u_x + u_y = 0.$$

[5]

[4]

[4]

[6]

SECTION B: ANSWER ANY 3 QUESTIONS

- 2. Solve the following partial differential equations using the method of Laplace transforms
 - (a) $u_{xt} + \sin t = 0$, u(x, 0) = x, u(0, t) = 0. [10]
 - (b) $xu_x + u_t = xt$, u(x, 0) = 0, u(0, t) = 0. [10]
- 3. Consider the following partial differential equation

$$2u_{xx} - 4u_{xy} + 2u_{yy} + 3u = 0.$$

- (a) Classify the partial differential equation as hyperbolic, parabolic or elliptic.
 [3]
- (b) Reduce the equation into its canonical form and hence find the general solution. [17]
- 4. Consider the function

$$f(x) = \begin{cases} -1, & -\pi \le x < 0; \\ 0, & x = 0; \\ +1, & 0 < x \le \pi. \end{cases} \qquad f(x + 2\pi) = f(x).$$

- (a) Find the fourier series expansion.
- (b) Use Parseval's identity to find the value of the sum

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$$
[8]

[12]

5. Find the particular solutions for the following partial differential equations

(a)
$$yu_u - x^2u_u = xy$$
, $u = x^2$ on $3y^2 = 2x^3$. [10]

- (b) $u_{xy} = 1$, u = 0 and $u_x = 0$ on x + y = 0. [10]
- 6. Show that the initial value problem with non-homogeneous boundary conditions

$$u_t - u_{xx} = 0, \quad 0 < x < L, \quad t > 0$$

$$u(0, t) = T_1, \quad t \ge 0$$

$$u(L, t) = T_2, \quad t \ge 0$$

$$u(x, 0) = f(x), \quad 0 \le x \le 1$$

can be transformed to an initial value problem with homogeneous boundary conditions. Hence find the general solution of initial value problem using separation of variables. [20]

f(t)	F(s)
t^n	$rac{n!}{s^{n+1}}$
$\frac{1}{\sqrt{t}}$	$\sqrt{\frac{\pi}{s}}$
e^{at}	$\frac{1}{s-a}$
$t^n e^{at}$	$rac{n!}{(s-a)^{n+1}}$.
$\frac{1}{a-b} \left(e^{at} - e^{bt} \right)$	$rac{1}{(s-a)(s-b)}$
$\frac{1}{a-b} \Big(a e^{at} - b e^{bt} \Big)$	$\frac{s}{(s-a)(s-b)}$
$\sin(at)$	$rac{a}{s^2+a^2}$
$\cos(at)$	$\frac{s}{s^2 + a^2}$
$\sin(at) - at\cos(at)$	$\frac{2a^3}{(s^2+a^2)^2}$
$e^{at}\sin(bt)$	$\frac{b}{(s-a)^2+b^2}$
$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}$
$\sinh(at)$	$rac{a}{s^2-a^2}$
$\cosh(at)$	$\frac{s}{s^2 - a^2}$
$\sin(at)\sinh(at)$	$\frac{2a^2}{s^4 + 4a^4}$
$\frac{d^n f}{dt^n}(t)$	$s^{n}F(s) - s^{n-1}f(0) - \dots - f^{(n-1)}(0)$

Table of Laplace Transforms

4