University of Swaziland

Final Examination, December 2015

B.A.S.S. , B.Sc, B.Eng, B.Ed

Title of Paper : Partial Differential Equations
Course Number : M415
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO sections.
a. SECTION A(COMPULSORY): 40 MARKS

Answer ALL QUESTIONS.
b. SECTION B: 60 MARKS

Answer ANY THREE questions.
Submit solutions to ONLY THREE questions in Section B.
2. Each question in Section B is worth 20%.
3. Show all your working.
4. Non programmable calculators may be used (unless otherwise stated).
5. Special requirements: None.

This paper should not be opened until permission has been given by the invigilator.

SECTION A: ANSWER ALL QUESTIONS

1.1. Write short notes explaining the following concepts
(a) order of a PDE,
(b) linearity,
(c) well posedness of a PDE ,
(d) boundary conditions.
1.2. Determine the region in which the given partial differential equation

$$
u_{x x}-\sqrt{\frac{(x-2)^{2}+y^{2}}{8}} u_{x y}+2 u_{y y}=e^{3 x}
$$

is hyperbolic, parabolic or elliptic. $(u=u(x, y))$.
1.3. Solve the following partial differential equations, $(u=u(x, y))$.
(a) $(2 x y-1) u_{x}+\left(u-2 x^{2}\right) u_{y}=2(x-u y)$,
(b) $(1-x) u_{x}+u_{y}=0$.
1.4. Assuming $1+x y \neq 0$, show that $u(x, y)=F\left(\frac{x}{1+x y}\right)$ is a solution of the following PDE

$$
x^{2} u_{x}+u_{y}=0 .
$$

SECTION B: ANSWER ANY 3 QUESTIONS

2. Solve the following partial differential equations using the method of Laplace transforms
(a) $u_{x t}+\sin t=0, \quad u(x, 0)=x, u(0, t)=0$.
(b) $x u_{x}+u_{t}=x t, \quad u(x, 0)=0, u(0, t)=0$.
3. Consider the following partial differential equation

$$
2 u_{x x}-4 u_{x y}+2 u_{y y}+3 u=0
$$

(a) Classify the partial differential equation as lyyperbolic, parabolic or elliptic.
(b) Reduce the equation into its canonical form and hence find the general solution.
4. Consider the function

$$
f(x)=\left\{\begin{array}{ll}
-1, & -\pi \leq x<0 ; \\
0, & x=0 ; \\
+1, & 0<x \leq \pi .
\end{array} \quad f(x+2 \pi)=f(x)\right.
$$

(a) Find the fourier series expansion.
(b) Use Parseval's identity to find the value of the sum

$$
\sum_{n-1}^{\infty} \frac{1}{(2 n-1)^{2}}
$$

5. Find the particular solutions for the following partial differential equations
(a) $y u_{y}-x^{2} u_{y}=x y, \quad u=x^{2}$ on $3 y^{2}=2 x^{3}$.
(b) $u_{x y}=1, \quad u=0$ and $u_{x}=0$ on $x+y=0$.
6. Show that the initial value problem with non-homogeneous boundary conditions

$$
\begin{aligned}
& u_{t}-u_{x x}=0, \quad 0<x<L, \quad t>0 \\
& u(0, t)=T_{1}, \quad t \geq 0 \\
& u(L, t)=T_{2}, \quad t \geq 0 \\
& u(x, 0)=f(x), \quad 0 \leq x \leq 1
\end{aligned}
$$

can be transformed to an initial value problem with homogeneous boundary conditions. Hence find the general solution of initial value problem using separation of variables.

Table of Laplace Transforms

$f(t)$	$F(s)$
t^{n}	$\frac{n!}{s^{n+1}}$
$\frac{1}{\sqrt{t}}$	$\sqrt{\frac{\pi}{s}}$
$e^{a t}$	$\frac{1}{s-a}$
$t^{n} e^{a t}$	$\frac{n!}{(s-a)^{n+1}}$
$\frac{1}{a-b}\left(e^{a t}-e^{b t}\right)$	$\frac{1}{(s-a)(s-b)}$
$\frac{1}{a-b}\left(a e^{a t}-b e^{b t}\right)$	$\frac{s}{(s-a)(s-b)}$
$\sin (a t)$	$\frac{a}{s^{2}+a^{2}}$
$\cos (a t)$	$\frac{s}{s^{2}+a^{2}}$
$\sin (a t)-a t \cos (a t)$	$\frac{2 a^{3}}{\left(s^{2}+a^{2}\right)^{2}}$
$e^{a t} \sin (b t)$	$\frac{b}{(s-a)^{2}+b^{2}}$
$e^{a t} \cos (b t)$	$\frac{s-a}{(s-a)^{2}+b^{2}}$
$\sinh (a t)$	$\frac{a}{s^{2}-a^{2}}$
$\cosh (a t)$	$\frac{s}{s^{2}-a^{2}}$
$\sin (a t) \sinh (a t)$	$\frac{2 a^{2}}{s^{4}+4 a^{4}}$
$\frac{d^{n} f}{d t^{n}}(t)$	$s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)$

