University of Swaziland

Final Examination, 2015/2016

B.Sc. IV, BASS IV, BED. IV

Title of Paper : Abstract Algebra II
Course Number : M423
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: NONE

This examination paper should not be opened until permission has been given by the invigilator.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

A1. (a) Give a definition of the following
(i) an integral domain
(ii) a divisor ring
(iii) a field
(b) Prove that a finite integral domain is a field.
(c) Give an example of an integral domain that is not a field

A2. (a) Define
(i) an ideal H in a ring R
(ii) a divisor of zero in a ring R
(iii) the characteristic of a ring R
(iv) unity in a ring R
(v) a unit in a ring R
(b) Prove that in a ring \mathbb{Z}_{n}
(i) the divisor of zero are those elements that are not relatively prime to n.
(ii) the elements that are relatively prime to n cannot be divisors of zero.

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3 [20 Marks]

(a) Find the greatest common divisor (ged) of the polynomials $f(x)=x^{4}+4 x^{3}+7 x^{2}+$ $6 x+2$ and $g(x)=x^{3}+4 x^{2}+7 x+4$ over Q and express the ged as a linear combination of $f(x)$ and $g(x)$.
(b) Prove that if R is a ring with unity and N an ideal of R containing a unit, then $N=R$.
(c) Describe all units in each of the following rings
(i) \mathbb{Z}_{7}
(ii) $\mathbb{Z} \times \mathbb{Q} \times \mathbb{Z}$

QUESTION B4 [20 Marks]

(a) State Eisentein's criterion for irreducibility.
(b) Use Eisentein's criterion to show that $f(x)=26 x^{5}-5 x^{4}+25 x^{2}-10$ is irreducible over Q.
(c) Find all zeros of $x^{3}+2 x+2$ in \mathbb{Z}_{7}.
(d) Find the quotient $q(x)$ and the remainder $r(x)$ when the polynomial $f(x)=4 x^{5}+$ $3 x^{4}+x^{3}+2 x^{2}+1$ is divided by $g(x)=3 x^{2}+x+3$ in \mathbb{Z}_{5}.

QUESTION B5 [20 Marks]

(a) Which of the following sets is a ring with the usual operations of addition and multiplication? In each case either prove that it is a ring or explain why it is not.
(i) The set $\{1,-1, i,-i\}$
(ii) The set $\mathbb{Z}[\sqrt{5}]=\{a+b \sqrt{5}: a . b \in \mathbb{Z}\}$
(b) Show, that \mathbb{Z} and $3 \mathbb{Z}$ are not isomorphic as rings.

QUESTION B6 [20 Marks]

(a) Show that the polynomial $x^{2}+x+1$ is irreducible in $\mathbb{Z}_{2}[x]$
(b) Let α be a zero of $x^{2}+x+1$ in the extension field of $\mathbb{Z}_{2}, E=\mathbb{Z}(\alpha)$
(i) Write down all the elements of $\mathbb{Z}_{2}(\alpha)$
(ii) Construct the multiplication for $\mathbb{Z}_{2}(\alpha)$, showing the inverse for each non-zero element.

QUESTION B7 [20 Marks]

(a) Show that if D is an integral domain then the ring $D[x]$ of polynomials is also an integral domain.
(b) The polynomial $x^{4}+2 x^{3}+x^{2}+x+1$ has a linear factor in $\mathbb{Z}_{3}[x]$. Find the factorization into irreducible polynomial in $\mathbb{Z}_{3}[x]$
(c) Show that $\alpha=\sqrt{1-\sqrt{2}}$ is algebraic over \mathbb{Q}. Find the minimum polynomial and the degree of α
(i) Over \mathbb{R}
(ii) Over \mathbb{Q}.

