UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION, 2015/2016

B.Sc. IV, BASS IV, BED. IV

Title of Paper : Abstract Algebra II

Course Number : M423

Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO (2) Sections:

a. SECTION A (40 MARKS)

– Answer **ALL** questions in Section A.

b. SECTION B

- There are FIVE (5) questions in Section B.

- Each question in Section B is worth 20 Marks.

- Answer ANY THREE (3) questions in Section B.

- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

A1.	(a) Prove that every field is a integral domain	(6)
	(b) Which of the following are rings with the usual addition and multiplication	
	(i) $\{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$ (ii) $M_2(\mathbb{R})$ with zero determinant	(8)
	(c) Mark each of the following true or false	(~)
	(i) Every finite integral domain is a field	
	(ii) Every division ring is commutative	
	(iii) \mathbb{Z}_6 is not an integral domain	(6)
A2.	(a) Use Fermat's theorem to computer the remainder when 8^{123} is divided by 13 (b) For each of the following, find irred (α, Q) and $\deg(\alpha, Q)$.	(6)
	(i) $\sqrt{3}+i$	
	(ii) $\sqrt{\frac{1}{5} + \sqrt{7}}$	(6)

(c) Show that if a polynomial $f(x) \in \mathbb{Z}[x]$ is reducible over \mathbb{Q} then its also reducible over $\mathbb{Z}[x]$. (8)

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3 [20 Marks]

- (a) Show that for a field F, the set of all matrices of the form $\begin{pmatrix} a_{11}, & a_{12} \\ 0 & 0 \end{pmatrix}$ $a_{ij} \in F$ is a right ideal but not a left ideal of $M_2(F)$ (6)
- (b) Let $\varphi_{\alpha} : \mathbb{Z}_{7}[x] \to \mathbb{Z}_{7}$. Evaluate each of the following for the indicated evaluation homomorphism

(i)
$$\varphi_2(3x^{79} + 5x^{53} + 2x^{43})$$

(ii)
$$\varphi_3[(x^3+2)(4x^2+3)(x^7+3x^2+1))$$
 (10)

(c) Show that if D is an integral domain, then D(x) is also an integral domain. (4)

QUESTION B4 [20 Marks]

(a)	Suppose F is a filed, f is an irreducible polynomial over F and g , h are polynomials	
	over F such that f divides gh show that either f divides g or f divides h .	(1

(2)

(5)

- (b) Define an ideal N of a ring R
- (c) Find all ideals of \mathbb{Z}_{10} and all maximal ideals of \mathbb{Z}_{18} .

QUESTION B5 [20 Marks]

- (a) Find the greatest common divisor of the polynomials $f(x) = x^4 + 4x^3 + 7x^2 + 6x + 2$ and $g(x) = x^3 + 4x^2 + 7x + 4$. over \mathbb{Q} and express it as a linear combination of f(x)and g(x).
- (b) Prove that if R is a ring with unity and N is an ideal of R containing a unit, then N = R.(6)
- (c) Describe all units in each of the following rings
 - (i) \mathbb{Z}_7
 - (ii) $\mathbb{Z} \times \mathbb{Q} \times \mathbb{Z}_3$

QUESTION B6 [20 Marks]

- (a) State whether or not each of the given function v, is an Euclidea evaluation for the given integral domain
 - (i) $v(n) = n^2$ for a non-zero $n \in \mathbb{Z}$,
 - (ii) $v(a) = s_0$ for a non-zero values $a \in \mathbb{Q}$
- (b) State Knonecker's theorem [Do Not Prove]
- (c) Given that every element β of $\beta = F(\alpha)$ can be uniquely expressed in the form $\beta = b_0 + b_1 \alpha^2 + \dots + b_{n-1} \alpha^{n-1}$ where each $b_i \in F, \alpha$ algebraic over the field F and $(\alpha, F) \ge 1$. Show that if F is finite with q elements, then $F(\alpha)$ has q^n elements. (8)

(6)

(8)

(8)

QUESTION B7 [20 Marks]

- (a) Classify each of the given $\alpha \in$ as algebraic or transcendal over the given field F. If α is algebraic over F find $deg(\alpha, F)$
- (i) $\alpha = 1 + i, F = \mathbb{Q}$ (ii) $\alpha = \sqrt{\pi}, F = \mathbb{Q}[\pi]$ (iii) $\alpha = \pi^2, F = \mathbb{Q}$ (iv) $\alpha = \pi^2, F = \mathbb{Q}(\pi^3)$ (v) $\alpha = \pi^2, F = \mathbb{Q}(\pi)$ (10 (b) Show that the ring $\mathbb{Z}_2\times\mathbb{Z}_2$ is NOT a field (5)(5)
- (c) Find a polynomial of degree > 0 in $\mathbb{Z}_4[x]$ that is a unit.

_END OF EXAMINATION PAPER