## University of Swaziland

## Supplementary Examination, 2015/2016

B.Sc. IV, BASS IV, BED. IV

Title of Paper : Abstract Algebra II<br>Course Number : M423<br>Time Allowed : Three (3) Hours<br>\section*{Instructions}

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

## Special Requirements: NONE

This examination paper should not be opened until permission has been GIVEN BY THE INVIGILATOR.

## SECTION A [40 Marks]: ANSWER ALL QUESTIONS

A1. (a) Prove that every field is a integral domain
(b) Which of the following are rings with the usual addition and multiplication
(i) $\{a+b \sqrt{2}: a, b \in \mathbb{Z}\}$
(ii) $M_{2}(\mathbb{R})$ with zero determinant
(c) Mark each of the following true or false
(i) Every finite integral domain is a field
(ii) Every division ring is commutative
(iii) $\mathbb{Z}_{6}$ is not an integral domain

A2. (a) Use Fermat's theorem to computer the remainder when $8^{123}$ is divided by 13
(b) For each of the following, find irred $(\alpha, Q)$ and $\operatorname{deg}(\alpha, Q)$.
(i) $\sqrt{3}+i$
(ii) $\sqrt{\frac{1}{5}+\sqrt{7}}$
(c) Show that if a polynomial $f(x) \in \mathbb{Z}[x]$ is reducible over $\mathbb{Q}$ then its also reducible over $\mathbb{Z}[x]$.

## SECTION B: ANSWER ANY THREE QUESTIONS

## QUESTION B3 [20 Marks]

(a) Show that for a field $F$, the set of all matrices of the form $\left(\begin{array}{cc}a_{11}, & a_{12} \\ 0 & 0\end{array}\right) a_{i j} \in F$ is a right ideal but not a left ideal of $M_{2}(F)$
(b) Let $\varphi_{\alpha}: \mathbb{Z}_{7}[x] \rightarrow \mathbb{Z}_{7}$. Evaluate each of the following for the indicated evaluation homomorphism
(i) $\varphi_{2}\left(3 x^{79}+5 x^{53}+2 x^{43}\right)$
(ii) $\varphi_{3}\left[\left(x^{3}+2\right)\left(4 x^{2}+3\right)\left(x^{7}+3 x^{2}+1\right)\right.$
(c) Show that if $D$ is an integral domain, then $D(x)$ is also an integral domain.

## QUESTION B4 [20 Marks]

(a) Suppose $F$ is a filed, $f$ is an irreducible polynomial over $F$ and $g, h$ are polynomials over $F$ such that $f$ divides $g h$ show that either $f$ divides $g$ or $f$ divides $h$.
(b) Define an ideal $N$ of a ring $R$
(c) Find all ideals of $\mathbb{Z}_{10}$ and all maximal ideals of $\mathbb{Z}_{18}$.

## QUESTION B5 [20 Marks]

(a) Find the greatest common divisor of the polynomials $f(x)=x^{4}+4 x^{3}+7 x^{2}+6 x+2$ and $g(x)=x^{3}+4 x^{2}+7 x+4$. over $\mathbb{Q}$ and express it as a linear combination of $f(x)$ and $g(x)$.
(b) Prove that if $R$ is a ring with unity and $N$ is an ideal of $R$ containing a unit, then $N=R$.
(c) Describe all units in each of the following rings
(i) $\mathbb{Z}_{7}$
(ii) $\mathbb{Z} \times \mathbb{Q} \times \mathbb{Z}_{3}$

## QUESTION B6 [20 Marks]

(a) State whether or not each of the given function $v$, is an Euclidea evaluation for the given integral domain
(i) $v(n)=n^{2}$ for a non-zero $n \in \mathbb{Z}$,
(ii) $v(a)=s_{0}$ for a non-zero values $a \in \mathbb{Q}$
(b) State Knonecker's theorem [Do Not Prove]
(c) Given that every element $\beta$ of $\beta=F(\alpha)$ can be uniquely expressed in the form $\beta=b_{0}+b_{1} \alpha^{2}+\cdots+b_{n-1} \alpha^{n-1}$ where each $b_{i} \in F, \alpha$ algebraic over the field $F$ and $(\alpha, F) \geq 1$. Show that if $F$ is finite with $q$ elements, then $F(\alpha)$ has $q^{n}$ elements.

## QUESTION B7 [20 Marks]

(a) Classify each of the given $\alpha \in$ as algebraic or transcendal over the given field $F$. If $\alpha$ is algebraic over $F$ find $\operatorname{deg}(\alpha, F)$
(i) $\alpha=1+i, F=\mathbb{Q}$
(ii) $\alpha=\sqrt{\pi}, F=\mathbb{Q}[\pi]$
(iii) $\alpha=\pi^{2}, F=\mathbb{Q}$
(iv) $\alpha=\pi^{2}, F=\mathbb{Q}\left(\pi^{3}\right)$
(v) $\alpha=\pi^{2}, F=\mathbb{Q}(\pi)$
(b) Show that the ring $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is NOT a field
(c) Find a polynomial of degree $>0$ in $\mathbb{Z}_{4}[x]$ that is a unit.

