UNIVERSITY OF SWAZILAND

٠

FINAL EXAMINATIONS 2015/2016

B.Sc. / B.Ed. / B.A.S.S. IV

TITLE OF PAPER	:	METRIC SPACES
COURSE NUMBER	:	M431
TIME ALLOWED	:	THREE (3) HOURS
INSTRUCTIONS	:	1. THIS PAPER CONSISTS OF <u>SEVEN</u> QUESTIONS.
		2. ANSWER <u>ALL</u> QUESTIONS IN SECTION A.
		3. ANSWER ANY <u>THREE</u> QUESTIONS IN SECTION B.
SPECIAL REQUIREMENTS	:	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

SECTION A

QUESTION 1

Let (X, d) be a metric space. Define the following:

•

.

.

(a)	the distance from $x \in X$ to a subset $A \subset X$;	[2]
(b)	the diameter of $A \subset X$;	[2]
(c)	the distance between two subsets, A and B , of X ;	[2]
(d)	a bounded subset $A \subset X$;	[2]
(e)	a bounded mapping g from a nonempty set Y to X ;	[2]
(f)	a convergent sequence (x_n) in X ;	[2]
(g)	a Cauchy sequence (x_n) in X;	[2]
(h)	a subspace (Y, d_Y) of (X, d) ;	[2]
(i)	an open ball $B(a, r)$ in (X, d) ;	[2]
(j)	an open subset F of X .	[2]

QUESTION 2

(a) Let d be the function on \mathbb{R}^2 defined by

$$d(x,y) = c_1|x_1 - y_1| + c_2|x_2 - y_2|,$$

where $x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$ and $c_1, c_2 \in \mathbb{R}$. Prove that (\mathbb{R}^2, d) is a metric space. [12]

(b) A translation T : ℝ² → ℝ² is a map given by T(x) = (x₁ + a, x₂ + b) for some fixed point (a, b) ∈ ℝ², where x = (x₁, x₂) ∈ ℝ². Prove that the Euclidian metric d on ℝ² is translation invariant, in the sense that for any two points x = (x₁, x₂) and y = (y₁, y₂) in ℝ², we have

$$d_2(T(x), T(y)) = d_2(x, y).$$
 [3]

(c) If a sequence (x_n) is convergent and has limit x, prove that every subsequence $(x_{n_k})_{k\geq 1}$ of (x_n) is convergent and has the same limit x. [5]

SECTION B

QUESTION 3

- (a) Let $X = \mathcal{C}[-2, 2]$, and let x(t) = t and $y(t) = t^2$ for $t \in [-2, 2]$. Find d(x, y) in $\mathcal{C}[-2, 2]$, where d is the
 - (i) uniform metric, [9]
 - (ii) L_1 -metric, [3]
 - (iii) L_2 -metric. [3]
- (b) Suppose that $f,g: X \longrightarrow \mathbb{R}$ are both continuous. Show that the function $h: X \longrightarrow \mathbb{R}$ defined by

$$h(x) = 6f(x) - 5g(x)$$

[5]

is continuous.

QUESTION 4

Let $A \subset \mathbb{R}^2$ be the region bounded by the unit disc centered at the origin, and let x = (4, 4). Find d(x, A) in \mathbb{R}^2 with each of the following metrics:

- (a) the London (or UK)-rail metric; [3]
- (b) the Max metric; [4]
- (c) the Chicago metric; [8]
- (d) the New York metric; [3]
- (e) the Raspberry pickers' metric. [2]

QUESTION 5

- (a) Let (X, d) be a metric space, and let (x_n) and (y_n) be two sequences in X such that (y_n) is a Cauchy sequence and d(x_n, y_n) → 0 as n → ∞. Prove that:
 - (i) (x_n) is a Cauchy sequence in X; [5]
 - (ii) (x_n) converges to a limit x in X if and only if (y_n) also converges to x in X. [5]

(b) Prove that every Cauchy sequence in a metric space (X, d) is bounded. [4]

(c) Let (X, d) be a metric space, and let d' be the metric on X defined by

$$d'(x,y) = \min\{1, d(x,y)\}.$$

Prove that (x_n) is a Cauchy sequence in (X, d) if and only if (x_n) is a Cauchy sequence in (X, d'). [6]

QUESTION 6

- (a) Given a function $f:(X, d_1) \longrightarrow (X, d_2)$,
 - (i) When is f said to be continuous in the $\varepsilon \delta$ sense?
 - (ii) Give an equivalent definition in terms of open sets.
 - (iii) Assuming f is continuous at x_0 , prove that

$$x_n \to x_0 \Rightarrow f(x_n) \to f(x_0).$$

[14]

(b) Prove that the function π : ℝ² → ℝ defined by π(x, y) = x is continuous when
 ℝ² and ℝ are equipped with their usual metrics. Is π uniformly continuous?
 Justify your answer. [6]

QUESTION 7

- (a) Let (X, d) be a metric space and (x_n) be a sequence in X. What is meant by saying that (x_n) is convergent? [2]
- (b) Decide whether or not the following sequences are convergent in the usual (Euclidean) metric on R²:

(i)
$$x_n = \left(\frac{n^2}{3n^2 + 1}, \frac{1}{n+2}\sin(\frac{n\pi}{2})\right),$$

(ii) $x_n = (3^{-2n}, (-1)^n \exp(\frac{1}{n})).$ [4,4]

(c) Consider \mathbb{R}^2 with the New York metric. Let $(x^{(n)})_{n \ge 1}$, where $x^{(n)} = (x_1^{(n)}, x_2^{(n)})$, be a sequence of points in \mathbb{R}^2 . Prove that $(x^{(n)})_{n \ge 1}$ converges to $x = (x_1, x_2) \in \mathbb{R}^2$ if and only if either

1.
$$x_1^{(n)} = x_1 \forall n \in \mathbb{N} \text{ and } x_2^{(n)} \to x_2, \text{ or}$$

2. $x_1^{(n)} \neq x_1 \text{ for some } n \in \mathbb{N}, \text{ and } x_1^{(n)} \to x_1, x_2^{(n)} \to 0, \text{ and } x_2 = 0.$ [10]

END OF EXAMINATION