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SECTION A 

QUESTION 1 

Let (X, d) be a metric space. Define the following: 

(a) the distance from x E X to a subset A eX; (2] 

(b) the diameter of A eX; [2] 

(c) the distance between two subsets, A and B, of X; [2] 

(d) a bounded subset A c X; [2] 

(e) a bounded mapping 9 from a nonempty set Y to X; [2] 

(f) a convergent sequence (Xn) in Xi [2] 

(g) a Cauchy sequence (xn) in Xi [2] 

(h) a subspace (Y,dy ) of (X,d); (2] 

(i) an open ball B(a,r) in (X,d); (2] 

(j) an open subset F of X. [2] 



QUESTION 2 

(a) Let d be the function on ]R2 defined by 

where x = (XI,X2),Y = (YllY2) E ]R2 and CI,C:2 E R Prove that (]R2,d) is a 

metric space. [12] 

(b) A translation T : ]R2 -+ ]R2 is a map given by T{x) = (Xl + a, X2 b) for 

some fixed point (a, b) E ]R2, where X = (Xl, X2) E ll~.2~ Prove that the Euclidian 

metric d on ]R2 is translation invariant, in the sense that for any two points 

X = (XI,X2) and Y = (YI,Y2) in ]R2, we have 

d2(T(x), T(y)) = ~(x, y). 

[3] 

(c) 	If a sequence (xn) is convergent and has limit x, prove that every subsequence 

(XnIJk~1 of (xn) is convergent and has the same limit x. [5] 



SECTION B 

QUESTION 3 

t2(a) Let X = C[-2, 2], and let x(t) = t and y(t) = for t E [-2,2]. Find d(x, y) in 

C[-2,2]' where d is the 

(i) uniform metric, [9] 

(ii) L1-metric, [3] 

(iii) L2 -metric. [3] 

(b) Suppose that f, 9 : X ---+ ]R are both continuous. Show that the function 

h : X ---+ ]R defined by 

h(x) = 6f(x) - 5g(x) 

is continuous. [5] 

QUESTION 4 

Let A C JR2 be the region bounded by the unit disc centered at the origin, and let 

x = (4, 4). Find d(x, A) in ]R2 with each of the following metrics: 

(a) the London (or UK)-rail metric; [3] 

(b) the Max metric; [4] 

(c) the Chicago metric; [8] 

(d) the New York metric; [3] 

(e) the Raspberry pickers' metric. [21 



QUESTION 5 


(a) Let (X, d) be a metric space, and let (xn) and (Yn) be two sequences in X such 

that (Yn) is a Cauchy sequence and d(xn' Yn) -t 0 as n -t oo.Prove that: 

(i) (xn) is a Cauchy sequence in Xj [5] 

(ii) (xn) converges to a limit x in X if and only if (Yn) also converges to x in 

X. [5] 

(b) Prove that every Cauchy sequence in a metric space (X,d) is bounded. [4] 

(c) Let (X, d) be a metric space, and let d' be the metric on X defined by 

d'(x, y) = min{l, d(x, y)}. 

Prove that (xn) i a Cauchy sequence in (X, d) if and only if (xn) is a Cauchy 

sequence in (X, d'). [6] 

QUESTION 6 

(a) Given a function f : (X, d1) ----t (X, d2), 

(i) When is f said to be continuous in the g - 6 sense? 

(ii) Give an equivalent definition in terms of open sets. 

(iii) Assuming f is continuous at Xo, prove that 

[14] 

(b) Prove that the function 7r : 1R2 ----t 1R defined by 7r (x, y) = x is continuous when 

1R2 and 1R are equipped with their usual metrics. Is 7r uniformly continuous? 

Justify your answer. [6] 



QUESTION 7 

(a) Let (X, d) be a metric space and (xn) be a sequence in X, What is meant by 

saying that (xn) is convergent? [2] 

(b) Decide whether or not the following sequences are convergent in the usual (Eu­

• 	 clidean) metric on R2: 

(') (n2 1. (mr)) 
1 Xn = 3n2 + 1 ' n + 2 sm 	2 ' 

(ii) Xn = (3-2n,(_1)nexp(.!.)). 	 [4,4]
n 

(c) Consider R2 with the New York metric, Let (x(n»)n~l' where x(n) = (x~n),x~n»), 
.' 

be a sequence of points in R2. Prove that (x(n»)n~l converges to x = (Xl, X2) E 

R2 if and only if either 

(n) -'- C ""-T 	 d (n) (n) 0 d 02. Xl I Xl lor some n E I'l, an Xl -+ XI, X2 -+ ,an X2 = , [1OJ 

END OF EXAMINATION 


