UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATIONS 2015/2016

B.Sc. / B.Ed. / B.A.S.S. IV

TITLE OF PAPER	:	METRIC SPACES
COURSE NUMBER	:	M431
TIME ALLOWED	:	THREE (3) HOURS
INSTRUCTIONS	:	1. THIS PAPER CONSISTS OF SEVEN QUESTIONS. 2. ANSWER ALL QUESTIONS IN SECTION A. 3. ANSWER ANY THREE QUESTIONS IN SECTION B.
SPECIAL REQUIREMENTS	:	NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

SECTION A

QUESTION 1

(a) What is meant by " (X, d) is a metric space?"
(b) A translation $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is a mapping given by $T(x)=\left(x_{1}+a, x_{2}+b\right)$ for some fixed point $(a, b) \in \mathbb{R}^{2}$, where $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$. Prove that the Euclidian metric d_{2} on \mathbb{R}^{2} is translation invariant, in the sense that for any two points $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ in \mathbb{R}^{2}, we have

$$
d_{2}(T(x), T(y))=d_{2}(x, y)
$$

(c) Suppose that $\left(x_{n}\right)$ converges to x in $C[a, b]$ in the uniform metric. Explain what is meant by pointuise convergence of a sequence $\left(x_{n}\right)$ in $C[a, b]$. Show that $\left\{x_{n}\right\}$ converges to x pointwise.
(d) Define compactness of a metric space in terms of

> (i) open coverings,
> (ii) sequences.
(e) Explain what is meant by a contraction of a metric space, and state without proof the Contraction Mapping Theorem.
(f) (i) What is a Lebesgue number for a given open cover of a metric space?
(ii) State without proof Lebesgue's Covering Lemma.

QUESTION 2

Show that infinitely many metrics can be defined on a set with more than one element. (Hint: Given a metric space $\left(X, d_{1}\right)$, show that $d_{2}(x, y)=\frac{d_{1}(x, y)}{1+d_{1}(x, y)}, \forall x, y \in X$, is a metric on X, and then apply induction on $n \in \mathbb{N}$).

SECTION B

QUESTION 3

(a) Can you find a metric space (X, d) where:
(i) The interval $[0,1]$ is both open and closed?
(ii) The interval $\left[0, \frac{1}{2}\right]$ is open but not closed?

Justify your answer in each case.
(b) Describe open balls $B(a, 3)$, where $a=(2,3)$ in \mathbb{R}^{2} with respect to the following metrics:
(i) the Chicago metric;
(ii) the London (or UK)-rail metric;
(iii) the New York metric;
(iv) the Raspberry pickers' metric.

QUESTION 4

Let $A \subset \mathbb{R}^{2}$ be the region bounded by the unit disc centered at the origin. Find $\operatorname{diam}(A)$ with each of the following metrics:
(a) the Max metric;
(b) the Chicago metric;
(c) the London (or UK)-rail metric;
(c) the New York metric;
(d) the Raspberry pickers' metric.

QUESTION 5

(a) Give two alternate definitions of connectedness of a subset M of a metric space X.
(b) Let $X=\mathcal{C}[0,1]$, the set of all continuous functions on $[0,1]$, and let d be the metric on X defined by

$$
d(f, g)=\int_{0}^{1}|f(x)-g(x)| \mathrm{d} x .
$$

For each $n \in \mathbb{N}$, define f_{n} by $f_{n}(x)=x^{n}$ for all $x \in[0,1]$.
(i) Show that the sequence $\left(f_{n}\right)$ converges in X, and find its limit f.
(ii) Show that the function f in Part (i) is not the pointwise limit of the sequence $\left(f_{n}\right)$.
(c) Let d be the metric on $X=\mathcal{C}[a, b]$ defined by

$$
d(f, g)=\sup _{x \in[a, b]}|f(x)-g(x)| .
$$

Let $\left(f_{n}\right)$ be a sequence in $\mathcal{C}[a, b]$, and suppose that $\left(f_{n}\right)$ converges uniformly on $[a, b]$ to some function f.
(i) Prove that f is continuous on $[a, b]$, and hence show that $\left(f_{n}\right)$ converges in (X, d).
(ii) Prove that $\int_{a}^{b} f_{n}(x) \mathrm{d} x \longrightarrow \int_{a}^{b} f(x) \mathrm{d} x$ as $n \rightarrow \infty$.

QUESTION 6

(a) Prove that the sequence

$$
\left(x^{(n)}\right)_{n \geq 1}=\left(2 \frac{1}{2}, 1\right),\left(2 \frac{3}{4}, \frac{1}{2}\right),\left(2 \frac{7}{8}, \frac{1}{3}\right), \ldots,\left(3-\frac{1}{2^{n}}, \frac{1}{n}\right), \ldots
$$

is not convergent in \mathbb{R}^{2} equipped with the London (or UK)-rail metric.
(b) Let f be the function $f: C[0,1] \longrightarrow \mathbb{R}$ defined for $x \in C[0,1]$ by $f(x)=x(0)$. Show that f is not continuous with respect to the L_{1} metric on $C[0,1]$ (and the usual metric on \mathbb{R}) by considering the functions $x_{n}(t)$ given by

$$
x_{n}(t)=\left\{\begin{array}{lll}
(n-1) t & \text { if } & 0 \leq t \leq \frac{1}{n} \\
1-t & \text { if } & \frac{1}{n} \leq t \leq 1
\end{array}\right.
$$

(Hint Sketch the functions $x_{n}(t)$ and consider their limit in the L_{1} metric). [7]
(c) Let (X, d) be a metric space with the metric

$$
d(x, y)=\left\{\begin{array}{lll}
0 & \text { if } & x=y \\
3 & \text { if } & x \neq y
\end{array}\right.
$$

Show that any Cauchy sequence in X is eventually constant, and deduce that (X, d) is complete.

QUESTION 7

(a) Let X be a metric space. When is a subset $M \subseteq X$ said to be:
(i) bounded;
(ii) totally bounded.
(b) Prove that in \mathbb{R} with the usual metric, the notions of boundedness and total boundedness are equivalent.
(c) Show that a compact set is closed and bounded.
(d) Which of the following sets is compact? Give reasons.
(i) $\{(x, y): 0 \leq x \leq y \leq 1\}$ in \mathbb{R}^{2},
(ii) $\left\{1, \frac{1}{3}, \frac{1}{3^{2}}, \ldots, \frac{1}{3^{n}}, \ldots\right\}$ in \mathbb{R}, where $n \in \mathbb{N}$.

