UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATIONS 2015/2016

B.Sc. / B.Ed. / B.A.S.S. IV

: M431

:

TITLE OF PAPER

*

COURSE NUMBER

TIME ALLOWED

INSTRUCTIONS

: METRIC SPACES

THREE (3) HOURS :

> 1. THIS PAPER CONSISTS OF SEVEN QUESTIONS.

- 2. ANSWER ALL QUESTIONS IN SECTION A.
- 3. ANSWER ANY THREE QUESTIONS IN SECTION B.

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

SECTION A

QUESTION 1

- (a) What is meant by "(X, d) is a metric space?"
- (b) A translation T : ℝ² → ℝ² is a mapping given by T(x) = (x₁ + a, x₂ + b) for some fixed point (a, b) ∈ ℝ², where x = (x₁, x₂) ∈ ℝ². Prove that the Euclidian metric d₂ on ℝ² is translation invariant, in the sense that for any two points x = (x₁, x₂) and y = (y₁, y₂) in ℝ², we have

$$d_2(T(x), T(y)) = d_2(x, y).$$
[3]

[3]

(c) Suppose that (x_n) converges to x in C [a, b] in the uniform metric. Explain what is meant by *pointwise convergence* of a sequence (x_n) in C [a, b]. Show that {x_n} converges to x pointwise.

(d) Define compactness of a metric space in terms of

- (i) open coverings, [2]
- (ii) sequences. [1]
- (e) Explain what is meant by a contraction of a metric space, and state without proof the Contraction Mapping Theorem. [3]
- (f) (i) What is a Lebesgue number for a given open cover of a metric space? [1]
 (ii) State without proof Lebesgue's Covering Lemma. [3]

QUESTION 2

Show that infinitely many metrics can be defined on a set with more than one element. (Hint: Given a metric space (X, d_1) , show that $d_2(x, y) = \frac{d_1(x, y)}{1 + d_1(x, y)}, \forall x, y \in X$, is a metric on X, and then apply induction on $n \in \mathbb{N}$). [20]

SECTION B

QUESTION 3

- (a) Can you find a metric space (X, d) where:
 - (i) The interval [0, 1] is both open and closed? [2]
 - (ii) The interval $[0, \frac{1}{2}]$ is open but not closed? [2]

Justify your answer in each case.

(b) Describe open balls B(a, 3), where a = (2, 3) in \mathbb{R}^2 with respect to the following metrics:

(i)	the Chicago metric;	[4]
(ii)	the London (or UK)-rail metric;	[4]
(iii)	the New York metric;	[4]
(iv)	the Raspberry pickers' metric.	[4]

QUESTION 4

Let $A \subset \mathbb{R}^2$ be the region bounded by the unit disc centered at the origin. Find diam(A) with each of the following metrics:

(a)	the Max metric;	[4]
(b)	the Chicago metric;	[5]
(c)	the London (or UK)-rail metric;	[3]
(c)	the New York metric;	[4]
(d)	the Raspberry pickers' metric.	[4]

QUESTION 5

- (a) Give two alternate definitions of connectedness of a subset M of a metric space
 X. [4]
- (b) Let X = C[0, 1], the set of all continuous functions on [0, 1], and let d be the metric on X defined by

$$d(f,g) = \int_0^1 |f(x) - g(x)| \, \mathrm{d}x.$$

For each $n \in \mathbb{N}$, define f_n by $f_n(x) = x^n$ for all $x \in [0, 1]$.

- (i) Show that the sequence (f_n) converges in X, and find its limit f. [3]
- (ii) Show that the function f in Part (i) is not the pointwise limit of the sequence (f_n) . [3]
- (c) Let d be the metric on $X = \mathcal{C}[a, b]$ defined by

$$d(f,g) = \sup_{x \in [a,b]} |f(x) - g(x)|.$$

Let (f_n) be a sequence in $\mathcal{C}[a, b]$, and suppose that (f_n) converges uniformly on [a, b] to some function f.

(i) Prove that f is continuous on [a, b], and hence show that (f_n) converges in (X, d).

(ii) Prove that
$$\int_{a}^{b} f_{n}(x) dx \longrightarrow \int_{a}^{b} f(x) dx$$
 as $n \to \infty$. [5]

QUESTION 6

(a) Prove that the sequence

$$(x^{(n)})_{n\geq 1} = \left(2\frac{1}{2},1\right), \left(2\frac{3}{4},\frac{1}{2}\right), \left(2\frac{7}{8},\frac{1}{3}\right), \dots, \left(3-\frac{1}{2^n},\frac{1}{n}\right), \dots$$

is not convergent in \mathbb{R}^2 equipped with the London (or UK)-rail metric. [10]

(b) Let f be the function $f: C[0,1] \longrightarrow \mathbb{R}$ defined for $x \in C[0,1]$ by f(x) = x(0). Show that f is not continuous with respect to the L_1 metric on C[0,1] (and the usual metric on \mathbb{R}) by considering the functions $x_n(t)$ given by

$$x_n(t) = \begin{cases} (n-1)t & \text{if } 0 \le t \le \frac{1}{n} \\ 1-t & \text{if } \frac{1}{n} \le t \le 1 \end{cases}$$

(Hint Sketch the functions $x_n(t)$ and consider their limit in the L_1 metric). [7]

(c) Let (X, d) be a metric space with the metric

$$d(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 3 & \text{if } x \neq y. \end{cases}$$

Show that any Cauchy sequence in X is eventually constant, and deduce that (X, d) is complete. [3]

QUESTION 7

(a) Let X be a metric space. When is a subset $M \subseteq X$ said to be:	
(i) bounded;	
(ii) totally bounded.	[3]
(b) Prove that in \mathbb{R} with the usual metric, the notions of boundedness and to boundedness are equivalent.	otal [5]
(c) Show that a compact set is closed and bounded.	[6]
(d) Which of the following sets is compact? Give reasons.	
(i) $\{(x,y): 0 \le x \le y \le 1\}$ in \mathbb{R}^2 , (ii) $\{1, \frac{1}{3}, \frac{1}{3^2}, \dots, \frac{1}{3^n}, \dots\}$ in \mathbb{R} , where $n \in \mathbb{N}$.	[6]

END OF EXAMINATION