University of Swaziland

Final Examination, 2016/2017

B.Sc. II, B.Eng II, B.Ed II, BASS II

Title of Paper : Calculus II
Course Number : M212
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: None
This examination paper should not be opened until permission has been given by the invigilator.

A1. (a) Find $\frac{\partial f}{\partial x}, \quad \frac{\partial f}{\partial y}$ and $\frac{\partial f}{\partial z}$ for $f(x, y, z)=3 x^{2} y-\sin \left(\frac{2 y z^{3}}{x^{2}}\right)$
(b) Show that if $f(x, y)=x^{2}+x y+y^{2} \sin \left(\frac{x}{y}\right) \quad$ then $x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}=2 f$ and $x^{2} f_{x x}+2 x y f_{x y}+y^{2} f_{y y}=2 f$
(c) Find $\frac{\partial^{2} f}{\partial x^{2}}$ and $\frac{\partial^{2} f}{\partial y^{2}}$ for

$$
\begin{equation*}
f(x, y)=x^{4}-4 x^{3} y+4 x y^{3}-y^{4} \tag{6}
\end{equation*}
$$

A2. (a) For each of the following use a double integral to find the area bounded by the curves
(i) $y=x^{2}$ and $y=x^{4}$
(ii) $y=4 x+8$ and $y=x^{3}+8$
(b) A rectangular garden is to be fenced on 3 sides using 1000 metres of fencing (the 4th side being a straight river's edge). Use Langrange multipliers to find the dimensions that would give the largest possible area.

SECTION B: Answer any THREE Questions

QUESTION B1 [20 Marks]

(a) Find the critical points of the following function and test for relative maxima, minima and saddle points

$$
\begin{equation*}
f(x, y)=4 x y-x^{4}-y^{2} \tag{10}
\end{equation*}
$$

(b) Show that the ellipsoid $3 x^{2}+4 y^{2}+8 z^{2}-24=0$ and the hyperboloid of two piece $4 x^{2}-4 y^{2}-z^{2}-4=0$ are orthogonal (perpendicular) to each other at the common point $P_{0}\left(4 \frac{\sqrt{5}}{5}, \sqrt{2}, 2 \frac{\sqrt{5}}{5}\right)$

QUESTION B2 [20 Marks]

(a) Show that the function

$$
f(x, y)=\frac{x y}{x-y}
$$

satisfies

$$
\begin{equation*}
x^{2} f_{x x}+2 x y F_{x y}+y^{2} f_{y y}=0 \tag{4}
\end{equation*}
$$

(b) Evaluate the iterated integral

$$
\begin{equation*}
\int_{0}^{8} \int_{+3 \sqrt{y}}^{2} e^{x^{4}} d x d y \tag{16}
\end{equation*}
$$

QUESTION B3 [20 Marks]

(a) Express the given rectangular equations in polar
(i) $x y=4$
(ii) $x^{2}-8 x+y^{2}+7=0$
(b) Consider the curve

$$
r=2+2 \sin \theta
$$

(i) Sketch the curve.
(ii) Find the area enclosed by the curve.
(iii) Find the length of the curve

QUESTION B4 [20 Marks]

(a) Find the equation of the tangent to the surface
$f(x, y, z)=x^{2}+3 y^{2}-4 z^{2}+3 x y-10 y z+4 x-5 z-22$
at the point $(1,-2,1)$.
(b) Find the point on the place

$$
\begin{equation*}
x+2 y-3 z-4=0 \tag{10}
\end{equation*}
$$

nearest to the origin.
(a) Evaluate the integral by converting to polar coordinates

$$
\begin{equation*}
\int_{0}^{2} \int_{\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} x^{2} y^{2} d x d y \tag{10}
\end{equation*}
$$

(b) Evaluate

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-y^{2}-x^{2}}} x^{3} y z d z d y d x \tag{10}
\end{equation*}
$$

