UNIVERSITY OF SWAZILAND

FINAL EXAMINATION, 2016/2017

B.Sc. II, B.Eng II, B.Ed II, BASS II

Title of Paper : Calculus II

Course Number : M212

Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO (2) Sections:

a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.

b. SECTION B

- There are FIVE (5) questions in Section B.

- Each question in Section B is worth 20 Marks.

- Answer ANY THREE (3) questions in Section B.

- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: None

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: Answer ALL Questions

A1. (a) Find
$$\frac{\partial f}{\partial x}$$
, $\frac{\partial f}{\partial y}$ and $\frac{\partial f}{\partial z}$ for $f(x, y, z) = 3x^2y - \sin(\frac{2yz^3}{x^2})$ (6)
(b) Show that if $f(x, y) = x^2 + xy + y^2 \sin(\frac{x}{y})$ then $x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = 2f$ and
 $x^2 f_{xx} + 2xy f_{xy} + y^2 f_{yy} = 2f$ (8)
(c) Find $\frac{\partial^2 f}{\partial x^2}$ and $\frac{\partial^2 f}{\partial y^2}$ for
 $f(x, y) = x^4 - 4x^3y + 4xy^3 - y^4$

- A2. (a) For each of the following use a double integral to find the area bounded by the curves
 - (i) $y = x^2$ and $y = x^4$
 - (ii) y = 4x + 8 and $y = x^3 + 8$ (12)

(b) A rectangular garden is to be fenced on 3 sides using 1000 metres of fencing (the 4th side being a straight river's edge). Use Langrange multipliers to find the dimensions that would give the largest possible area.

SECTION B: Answer any THREE Questions

QUESTION B1 [20 Marks]

(a) Find the critical points of the following function and test for relative maxima, minima and saddle points

$$f(x,y) = 4xy - x^4 - y^2$$
(10)

÷

60

(6)

(b) Show that the ellipsoid $3x^2 + 4y^2 + 8z^2 - 24 = 0$ and the hyperboloid of two piece $4x^2 - 4y^2 - z^2 - 4 = 0$ are orthogonal (perpendicular) to each other at the common point $P_0(4\frac{\sqrt{5}}{5}, \sqrt{2}, 2\frac{\sqrt{5}}{5})$ (10)

QUESTION B2 [20 Marks]

(a) Show that the function

$$f(x,y) = \frac{xy}{x-y}$$

satisfies

$$x^2 f_{xx} + 2xy F_{xy} + y^2 f_{yy} = 0 ag{4}$$

(b) Evaluate the iterated integral

$$\int_{0}^{8} \int_{+3\sqrt{y}}^{2} e^{x^{4}} dx dy$$
(16)

QUESTION B3 [20 Marks]

(a) Express the given rectangular equations in polar

(i)
$$xy = 4$$

(ii) $x^2 - 8x + y^2 + 7 = 0$ (4)

(b) Consider the curve

$$r = 2 + 2\sin\theta$$

- (i) Sketch the curve.
- (ii) Find the area enclosed by the curve.
- (iii) Find the length of the curve

QUESTION B4 [20 Marks]

- (a) Find the equation of the tangent to the surface $f(x, y, z) = x^2 + 3y^2 - 4z^2 + 3xy - 10yz + 4x - 5z - 22$ at the point (1, -2, 1).
 (10)
- (b) Find the point on the place

$$x + 2y - 3z - 4 = 0$$

nearest to the origin.

 $\mathbf{2}$

(10)

(16)

61

QUESTION B5 [20 Marks]

(a) Evaluate the integral by converting to polar coordinates

$$\int_{0}^{2} \int_{\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} x^{2}y^{2} dx dy \tag{10}$$

(b) Evaluate

$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-y^{2}-x^{2}}} x^{3}yzdzdydx$$
(10)

,

END OF EXAMINATION PAPER

.