University of Swaziland

Final Examination, December 2016

B.A.S.S. , B.Sc, B.Eng, B.Ed

Title of Paper : Numerical Analysis I
Course Number : M311
Time Allowed : Thrce (3) Hours

Instructions

1. This paper consists of TWO sections.
a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.
b. SECTION B: 60 MARKS

Answer ANY THREE questions.
Submit solutions to ONLY THREE questions in Section B.
2. Each question in Section B is worth 20%.
3. Show all your working.
4. Non programmable calculators may be used (unless otherwise stated).
5. Special requirements: None,

This paper should not be opened until permission has been given BY THE invigilator.

SECTION A: Answer All Questions

A1. (a) i. Convert the decimal number $\frac{43}{5}$ to its binary equivalent. [4]
ii. Given the function $f(x)=-3+\sqrt{9-x}$, find a suitable function $g(x)$ that has been reformulated to be algebraically equivalent to $f(x)$ with the aim of avoiding loss of significance crror.
(b) i. Estimate the root of the equation, $\ln x-e^{x}+3=0$ using 3 itcrations of the Newton Method with starting point $x_{0}=1$.
ii. Give one advantage of the Newton Method.
(c) i. State the Weicrstrass Approximation Theorem.
ii. Given the nodes, $x_{0}=2, x_{1}=2.75$ and $x_{2}=4$, generate the cardinal functions associated with the Lagrange intcrpolating polynomial of second order.
(d) i. Give the gencral formula for the nth divided difference $f\left[x_{0}, x_{1}, \ldots, x_{n}\right]$.
ii. Given the set of data points $\{(0,1),(2,5),(4,17)\}$, gencrate Nowton's interpolation polynomial of degree 2 which passes through these points.
(e) Find the approximate value of

$$
I=\int_{0}^{1} \frac{d x}{1+x}
$$

using the Trapezoidal rule.
(f) Given the following linear system of equations, formulate the GaussSeidel iterative scheme for the $k^{\text {th }}$ approximate solution.
DO NOT SOLVE.

$$
\begin{gathered}
5 x_{1}-2 x_{2}+3 x_{3}=-1 \\
-3 x_{1}+9 x_{2}+x_{3}=2 \\
2 x_{1}-x_{2}-7 x_{3}=3
\end{gathered}
$$

SECTION B: Answer Any 3 Questions

B2. (a) Convert the decimal 5.125 into its binary cquivalent.
(b) Convert the binary $(0 . \overline{101})_{2}$ into its decimal equivalent.
(c) Determine the machine representation in single precision on a 32 bit word length computer for the decimal number -12.75 .

B3. Consider the function $f(x)=x^{3}+4 x^{2}-10$.
(a) Show that $f(x)$ has exactly one root in $[1,2]$.
(b) By performing 4 itcrations of the Bisection Method, show that this root lies in the interval [1.3125, 1.375].
(c) How many iterations would be required to locate this zero to a tolerance of 10^{-5} ?
(d) Give two advantages of the Biscetion Method.

B4. (a) Consider the following $(n+1)$ data points.

$$
\begin{array}{c|cccc}
x & x_{0} & x_{1} & \ldots & x_{n} \\
\hline f(x) & f\left(x_{0}\right) & f\left(x_{1}\right) & \ldots & f\left(x_{n}\right)
\end{array}
$$

where $x_{0}<x_{1}<x_{2}<\cdots<x_{n}$. Write down the Lagrange and Newton interpolation polynomials respectively for the given data.

(b) Find the Lagrange interpolation polynomial for the following data. | x | 0 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| $f(x)$ | 7 | 11 | 28 |.

(c) Consider the points $x_{0}=0, x_{1}=0.4, x_{2}=0.7$, and for a function $f(x)$, the divided differences are $f\left[x_{2}\right]=6, f\left[x_{1}, x_{2}\right]=10$, $f\left[x_{0}, x_{1}, x_{2}\right]=50 / 7$. Use this information to construct the complete divided difference table for the given points.
[6]

B5. (a) Use the Composite Trapezoidal rule with $n=4$ to estimate

$$
\int_{1}^{3} \sqrt{1+x^{2}} d x
$$

(b) Determine the values of h and n that will ensure that the crror of the Composite Simpson's rule to compute the integral $\int_{0}^{1} e^{-2 x} d x$ is less than 10^{-5}.
(c) For the following observation data,

x	-1	0	1
$f(x)$	$f(-1)$	$f(0)$	$f(1)$

find the corresponding Newton-Cotes quadrature rule for approximating the integral $\int_{-2}^{2} f(x) d x$.

B6. (a) Use Gaussian climination to solve the system of linear equations.

$$
\begin{aligned}
2 x_{2}+x_{3} & =-8 \\
x_{1}-2 x_{2}-3 x_{3} & =0 \\
-x_{1}+x_{2}+2 x_{3} & =3 .
\end{aligned}
$$

[10]
(b) Consider the lincar system,

$$
\begin{array}{r}
4 x_{1}+x_{2}=1 \\
x_{1}+4 x_{2}-x_{3}=2 \\
x_{2}+4 x_{3}=3
\end{array}
$$

Starting with $X^{(0)}=[0,0,0]^{T}$, use the Gauss-Scidel iterative method to find $X^{(1)}$.
[10]

END OF EXAMINATION

