University of Swaziland

TES

Final Examination, December 2016

B.A.S.S., B.Sc, B.Eng, B.Ed

- Title of Paper : Numerical Analysis I
- Course Number : M311
- **<u>Time Allowed</u>** : Three (3) Hours

Instructions

- 1. This paper consists of TWO sections.
 - a. **SECTION A(COMPULSORY): 40 MARKS** Answer ALL QUESTIONS.
 - b. SECTION B: 60 MARKS Answer ANY THREE questions.
 Submit solutions to ONLY THREE questions in Section B.
- 2. Each question in Section B is worth 20%.
- 3. Show all your working.
- 4. Non programmable calculators may be used (unless otherwise stated).
- 5. Special requirements: None.

This paper should not be opened until permission has been given by the invigilator.

SECTION A: Answer All Questions

A1.	(a)	i.	Convert the decimal number $\frac{43}{5}$ to its binary equivalent.	4]
		ii.	Given the function $f(x) = -3 + \sqrt{9 - x}$, find a suitable function $g(x)$ that has been reformulated to be algebraically equivalent to $f(x)$ with the aim of avoiding loss of significance error.	.c- v-
	(b)	i.	Estimate the root of the equation, $\ln x - e^x + 3 = 0$ using iterations of the Newton Method with starting point $x_0 = 1$.	3 [6]
				0]
		ii.	Give one advantage of the Newton Method.	[1]
	(c)	i.	State the Weierstrass Approximation Theorem.	[3]
		ii.	Given the nodes, $x_0 = 2$, $x_1 = 2.75$ and $x_2 = 4$, generate the cardinal functions associated with the Lagrange interpolating polynomial of second order.	he ng [6]
	(d)	i.	Give the general formula for the <i>n</i> th divided difference $f[x_0, x_1, \ldots, x_n]$.	[3]
		ii.	Given the set of data points $\{(0,1), (2,5), (4,17)\}$, general Newton's interpolation polynomial of degree 2 which pass through these points.	.te ies [6]
	(e)	Fin	d the approximate value of	

$$I = \int_0^1 \frac{dx}{1+x}$$

using the Trapezoidal rule.

.

[3]

. 7 /

 $\mathbf{2}$

(f) Given the following linear system of equations, formulate the Gauss-Seidel iterative scheme for the k^{th} approximate solution. DO NOT SOLVE.

$5x_1$		$2x_2$	+	$3x_3$		-1,	
$-3x_{1}$	+	$9x_2$	+	x_3		2,	
$2x_1$		x_2		$7x_3$	=	3.	
							[=
							[]

*. · ·

SECTION B: Answer Any 3 Questions

B2.	(a) Convert the decimal 5.125 into its binary equivalent.	[6]
	(b) Convert the binary $(0.\overline{101})_2$ into its decimal equivalent.	[6]
	(c) Determine the machine representation in single precision on a bit word length computer for the decimal number -12.75 .	32- [8]
B3.	Consider the function $f(x) = x^3 + 4x^2 - 10$.	
	(a) Show that $f(x)$ has exactly one root in $[1, 2]$.	[6]
	(b) By performing 4 iterations of the Bisection Method , show the this root lies in the interval [1.3125, 1.375].	hat [8]
	(c) How many iterations would be required to locate this zero to	оа

- tolerance of 10^{-5} ? [4]
- (d) Give two advantages of the Bisection Method. [2]

B4. (a) Consider the following (n + 1) data points. $\frac{x | x_0 | x_1 | \dots | x_n}{f(x) | f(x_0) | f(x_1) | \dots | f(x_n)}$

٠

where $x_0 < x_1 < x_2 < \cdots < x_n$. Write down the Lagrange and Newton interpolation polynomials respectively for the given data. [6]

- (b) Find the Lagrange interpolation polynomial for the following data. $\frac{x \quad 0 \quad 2 \quad 3}{f(x) \quad 7 \quad 11 \quad 28}.$ [8]
- (c) Consider the points $x_0 = 0$, $x_1 = 0.4$, $x_2 = 0.7$, and for a function f(x), the divided differences are $f[x_2] = 6$, $f[x_1, x_2] = 10$, $f[x_0, x_1, x_2] = 50/7$. Use this information to construct the complete divided difference table for the given points. [6]
- **B5.** (a) Use the Composite Trapezoidal rule with n = 4 to estimate

$$\int_{1}^{3} \sqrt{1+x^2} dx.$$
[6]

- (b) Determine the values of h and n that will ensure that the error of the Composite Simpson's rule to compute the integral $\int_0^1 e^{-2x} dx$ is less than 10^{-5} . [6]
- (c) For the following observation data,

find the corresponding Newton-Cotes quadrature rule for approximating the integral $\int_{-2}^{2} f(x) dx$. [8]

B6. (a) Use Gaussian elimination to solve the system of linear equations.

$$\begin{array}{rcrcrcrcrcrc}
2x_2 &+& x_3 &=& -8, \\
x_1 &-& 2x_2 &-& 3x_3 &=& 0, \\
-x_1 &+& x_2 &+& 2x_3 &=& 3.
\end{array}$$
[10]

(b) Consider the linear system,

Starting with $X^{(0)} = [0, 0, 0]^T$, use the Gauss-Seidel iterative method to find $X^{(1)}$. [10]

END OF EXAMINATION