University of SWaziland

Supplementary Examination, July 2017

BSc III, BEd III, BEng III, BASS III

Title of Paper : Vector Analysis

Course Number : M312

Time Allowed : Three (3) Hours

Instructions

1. This paper consists of NINE (9) questions in TWO sections.
2. Section A is COMPULSORY and is worth 40%. Answer ALL questions in this section.
3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
4. Show all your working.
5. Start each new major question (A1, B2 - B5) on a new page and clearly indicate the question number at the top of the page.
6. You can answer questions in any order.

Special Requirements: NONE

This examination paper should not be opened until permission has BEEN GIVEN BY THE INVIGILATOR.

Section A

Answer ALL Questions in this section

QUESTION AI

a. Evaluate
i. $\int_{0}^{\frac{1}{2} \pi} \sin ^{6} \theta \cos ^{2} \theta \mathrm{~d} \theta$
ii. $\int_{0}^{\infty} \frac{x \mathrm{~d} x}{1+x^{4}}$
b. Show that the set of functions $\left\{1,2 x, 4 x^{2}-2\right\}$ is orthogonal in the interval $(-\infty, \infty)$
with respect to the weight, function $w(x)=e^{-x^{2}}$.

QUESTION A2

Given that

$$
\mathrm{A}=x y z^{2} \mathbf{i}+2 x^{3} y \mathbf{j}-y z \mathbf{k}
$$

find
a. $\frac{\partial^{2} \mathrm{~A}}{\partial x \partial y}$
b. $\nabla \cdot \mathrm{A}$
c. $\nabla(\nabla \cdot A)$ at the point $(2,-1,0)$

QUESTION A3

a. Find the directional derivative of $\phi=x^{2} y^{2} z-3 x z^{3}$ at $(1,1,-1)$ in the direction $2 \mathbf{i}-3 \mathbf{j}+6 \mathbf{k}$.
b. Find an equation for the plane to the surface $x^{2} y^{2} z-3 x z^{3}=2$ at the point ($1,1,-1$).

QUESTION A4

The acceleration of a particle at any time $t \geq 0$ is given by

$$
a=e^{-t} \mathbf{i}+2 t \mathbf{j}+2 \sin t \mathbf{k}
$$

If the velocity v and the displacement r are zero at $t=0$, find v and r at any time.

Section B

Answer and 3 Questions in this section

QUESTION BI

a. Show that. for a Gamma distribution with parameters α and β, the k-th moment is given by

$$
\begin{equation*}
\mathbb{E}\left(X^{k}\right)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} x^{k} \cdot x^{\alpha-1} e^{-\beta x} \mathrm{~d} x=\frac{\Gamma(\alpha+k)}{\beta^{k} \Gamma(\alpha)} \tag{8}
\end{equation*}
$$

Hence, deduce that the mean and variance are given by
i. $\mathbb{E}(X)=\frac{\alpha}{\beta}$
ii. $\operatorname{Var}(X)=\mathbb{E}\left(X^{2}\right)-[\mathbb{E}(X)]^{2}=\frac{\alpha}{\beta^{2}}$.
respectively.
b. The generating function of Legendre polynomials is given by

$$
G(r . h)=\frac{1}{\sqrt{1-2 r h+h^{2}}}=\sum_{n=0}^{\infty} h^{n} P_{n}(x)
$$

By evaluating

$$
2 h \frac{\partial G}{\partial h}+G
$$

show that

$$
\begin{equation*}
\frac{1-h^{2}}{\left(1-2 x h+h^{2}\right)^{\frac{3}{2}}}=\sum_{n=0}^{\infty}(2 n+1) h^{n} P_{n}(x) \tag{7}
\end{equation*}
$$

QUESTION B2

a. By any method find the circulation of the field $\mathrm{F}=(x-y) \mathbf{i}+x \mathrm{j}$ around the circle $\mathbf{r}(t)=(\cos t) \mathbf{i}+(\sin t) \mathbf{j}, 0 \leq t \leq 2 \pi$
b. Consider the vector field

$$
F=e^{y+2 z}(\mathbf{i}+x \mathbf{j}+2 x \mathbf{k})
$$

i. Show that \mathbf{F} is a conservative force field
ii. Find the scalar potential ϕ for the vector field $\mathbf{F}=\nabla \phi$.
iii. Hence, or otherwise, find the work done in moving a particle from $(1,1,-2)$ to $(5,4,10)$ in the force field F.

QUESTION B3

a. Find the work done in moving a particle in the force field

$$
\mathrm{F}=\left(3 x^{2}-3 x\right) \mathrm{i}+3 z \mathrm{j}+\mathrm{k}
$$

from $(0,0,0)$ to $(1,1,1)$ along the curve $x=t, y=t, z=2 t, 0 \leqslant t \leqslant 2$.
b. Use Green's Theorem

$$
\oint_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
$$

to evaluate $\oint_{C} x e^{-2 x} d x+\left(x^{4}+2 x^{2} y^{2}\right) d y$ along the curve C. which is a
boundary of the region between the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.

QUESTION B4

a. Given the vectors $\mathrm{A}=A_{1} \mathbf{i}+A_{2} \mathbf{j}+A_{3} \mathrm{k}, \mathrm{B}=B_{1} \mathbf{i}+B_{2} \mathbf{j}+B_{3} \mathrm{k}$ and
$\mathrm{C}=C_{1} \mathrm{i}+C_{2} \mathrm{j}+C_{3} \mathrm{k}$ prove that $\mathrm{A} \times(\mathrm{B} \times \mathrm{C})=\mathrm{B}(\mathrm{A} \cdot \mathrm{C})-\mathrm{C}(\mathrm{A} \cdot \mathrm{B})$
b. Assume that $\phi(x, y, z)$ is contimuously differentable show that
$\nabla \times(\nabla \phi)=0$
c. Given that $\phi=4 x^{2} y^{3} z^{7}$ find $\nabla \cdot \nabla \phi$

QUESTION B5

a. Consider the formula

$$
A=\frac{1}{2} \oint_{C} x d y-y d x
$$

for the area of a region bounded by the closed curve C. Evaluate the area when C is the circle centred at the origin and with radius 2. Parametrize C first.
b. Consider the cylindrical polar coordinate system defined by

$$
x=\rho \cos \phi, \quad y=\rho \sin \phi, z=z
$$

a. Derive the scale factors h_{p}, h_{ϕ} and h_{z}.
b. Find the unit vectors e_{ρ}. e_{o} and e_{z} in terms of i, j and k and use them to show that cylindrical coordinate system is orthogonal

