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Instructions 

1. 	This paper consists of NINE (9) questions in T\VO sections. 

2. 	Section A is COMPULSORY and is worth 40%. Answer ALL questions 
in this section. 

3. 	Section B consists of FIVE questions, each worth 20%. Answer ANY THREE 
(3) questions in this section. 

4. 	Show all your working. 

Start each new major question (AI, B2 B5) on a new page and clearly 
indicate the question number at the top of the page. 

6. 	 You can ans\ver questions in any order. 

Special Requirements: NONE 

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS 

BEEN GIVEN BY THE INVIGILATOR. 
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Section A 


Answer ALL Questions in this section 


QUESTION Al 

a. Evaluate 
I_ 

I. 	 Bde1"2" sin° e 	 [4]

1= xdx11. 
o 	 IT X4 

b. 	 Show that the set of functions {l,2x, - 2} is orthogonal in t.he interval (-00, (0) 
with respect. to the weight. funct.ion W(l:) e- x1

• [3] 

QUESTION A2 

Given t.hat 

find 

82A 
a. 	 [4]8xay 

b. 	 v·A [3] 

c. v(v· A) at the point (2, L 0) 	 [5] 

QUESTION A3 

a. 	Find t.he direct.ional derivative of ¢ x2y2 z - at (1,1, 1) in the 

direction 2i 3j + 6k. 


b. 	 Find an equation for the plane to t.he surface x 2y2:: - 3xz:3 2 at the 
point (1,1, -1). [3] 
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QUESTION A4 

The acceleration of a particle at any time t "2: 0 is given by 

a = i -r- 2tj + 2 sin tk. 

If the velocity v and the displacement r are zero at t. = 0, fiIla v and r at any 
time. [10] 
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Section B 

Answer and 3 Questions in this section 

QUESTION Bl 

a. Show for a Gamma distribution with parameters Ct and the k-t.h moment is given by 

Hence, deduce that the mean and variance are given by 

I. JE(X) 
(J 

11. Var(X) = JE 


respectively. 


b. The generating function of Legendre polynomials is given by 

G(.r. /;) hllPII(.r). 

evaluating 
8G 

2h ah + G 

show 
1 h2 

I)211 -'-. l)hll Pll(x). [7] 
7l=() 

B2 

a. By any method find the circulation 
the circle rU) t)i + (sin /)j, 0 

the field F 
t:::; 271' 

(;7: - y)i + l:j around 
[8] 

b. Consider vector 
F = ey+2"(i + l:j + 2xk) 

L Show t.hat F is a conservative force field [4] 

11. the potential ¢ fOl vector field F = V ¢. 

iii. Hence, or otherwise, find the work done in moving a particle 
from (1,1, -2) to 4,10) in force F. 



VNISWA JULY EXAMINATIONS ACADEtlllC YEAR 2016/2017 

COURSE NA!'v1E AND CODE: M312 Vector PAGE 4 


QUESTION B3 

a. 	 Find the work done in moving a particle in the force field 

F = (3)'2 3J:)i + 3.:j + k 

from (0,0,0) to (1, I, 1) along the curve x t. y = t. z = 2t, 0::;: t ::;: 2. 

b. 	 Use Green's Theorem 
aMfe, AI d.l' + N dy JI - ~) ) d.Tdy 
uy 

to evaluate i dx + (Xci + 2x2 y2) dy along the curve C. which is a 

boundary of the region between the circles x 2 + y2 = 1 x 2 + y2 = 4. [13] 

QUESTION B4 

a. 	 Given the vectors A Ali + A~ + A3k, B = Bli + B 2j + B3k and 
C = eli + e~ + C3k prove that A x (B x C) = B(A· C) C(A· B) [8] 

b. 	 Assume that. ¢(x, y, is continuously different able show that 
v x (veP) 0 [8] 

[4] 

QUESTION B5 

a. Consider the formula 

A = - xdy1 i' 
2 c 

ydx 

for the area of a region bounded by the closed curve Evaluate the area 
when C is the circle cent.red at the origin and witb radius 2. Parametrize e firRt. [8] 

b. Com;ider the cylilldrical polar coordillate system defined Gy 

x = p cos (P, y Psm z = z. 

a. Derive the scale factors hp, ho and hz · 

b. Find the unit vectors ep . eo and ez in terms of i. j and k ancluse 
them to show that cylindrical coordinat e syst em is orthogonal [8] 

OF EXAMIl\ATION 


