University of Swaziland

Final Examination, 2016/2017

B.Sc. III, B.Ed III, BASS III

Title of Paper : Abstract Algebra I
Course Number : M323
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: None

This examination paper should not be opened until permission has been given by the invigilator.

SECTION A [40 Marks]: Answer ALL Questions

A1. (a) Show that, if $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then $a c \equiv b d(\bmod n)$
(b) Prove that, in any group G, the identity element is unique.
(c) The table on the last page may be completed to define a binary operation $*$ on the set $G=\{e, a, b, c\}$ in such a way that $(G, *)$ becomes a group. Assume this is possible and compute the missing entries.
(d) Let H be a proper subgroup of a group G where $|G|=p^{2}, p$ prime. Show that H is cyclic.

A2. Let

$$
\alpha=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
6 & 8 & 1 & 7 & 5 & 3 & 4 & 2
\end{array}\right)
$$

and

$$
\beta=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
7 & 1 & 8 & 3 & 4 & 5 & 2 & 6
\end{array}\right)
$$

(a) Express α and β as products of disjoint cycles, and then as products of transpositions. For each of them, say whether it is an even permutation or an odd one,
(b) Calculate $\alpha^{-1}, \beta^{-1} \alpha,(\alpha \beta)^{-1}$
(c) Solve the equations $x \alpha=\beta, \alpha y=\beta$
(d) Find the order of β and compute β^{2014}

SECTION B: Answer any THREE Questions

QUESTION B1 [20 Marks]

B1. (a) Determine whether the set \mathbb{Z} with respect to the binary operation

$$
\begin{equation*}
a * b=a+b-2017 \tag{7}
\end{equation*}
$$

is a group
(b) Find the order of $\frac{1}{2}(-1-i \sqrt{3})$ in \mathbb{C}^{0}, the multiplicative group of complex numbers.
(c) (i) State Lagrange's Theorem
(ii) Prove Lagrange's Theorem

QUESTION B2 [20 Marks]

B2. (a) Find the last (unit's) digit of the number 7^{2017}
(b) Let $H=<3>$ be the subgroup of \mathbb{Z}_{15}.
(i) Find all cosets of H in \mathbb{Z}_{15}.
(ii) Write the Cayley table for the group operation in the factor group \mathbb{Z}_{15} / H.
(c) Prove that every subgroup of a cyclic group is cyclic.

QUESTION B3 [20 Marks]

B3. (a) Let H be the subset $\{(1),(12),(34),(12)(34)\}$ of the group S_{4}.
(i) Show that H is a subgroup of S_{4}.
(ii) Show that H is not cyclic
(b) Let : $\left(G^{*}\right) \rightarrow(H, 0)$ be an isomorphism of groups.
(i) Prove that, it e_{G} is the identity element of G, then $\phi\left(e_{G}\right)$ is the identity element of H.
(ii) Prove that, for any $g \in G,\left(g^{-1}\right) \phi=(g) \phi^{-1}$
(iii) Prove that $K e r \phi$ is a normal subgroup of G.

QUESTION B4 [20 Marks]

B4. (a) (i) Define the term a subgroup of a grcup.
(ii) Let H be a subgroup of a group G, and let e_{H} and e_{G} be the identity elements of H and G respectively. Prove that $e_{H}=e_{G}$.
(b) Show that the group \mathbb{R} under addition is isomorphic to \mathbb{R}^{+}under multiplication.
(c) Prove that if G is finite group of a prime order then G is cyclic.

QUESTION B5 [20 Marks]

B5. (a) Show that a finite group of prime order has no proper subgroups
(b) Find the greatest common divisor d of the numbers 102 and 42 and express it in the form $d=102 m+42 n$ for some $m, n, \in \mathbb{Z}$
(c) Let G be the set of all 2×2 matrices of the form

$$
\left[\begin{array}{ll}
a & 0 \\
b & c
\end{array}\right]
$$

where $a, b, c \in \mathbb{Q}, a c \neq 0$.
(i) Show that, with respect to matrix multiplication, G is a group.
(ii) Let \mathbb{Q}^{0} be the multiplication group of non zero rational numbers.

Show that the mapping $\phi: G \rightarrow \mathbb{Q}^{\circ}$ by

$$
\phi\left(\left[\begin{array}{ll}
a & 0 \\
b & c
\end{array}\right]\right)=\frac{a}{c}
$$

is a group hormomorphism.
(iii) Find the kernel of ϕ.

End of Examination Paper.

\star	e	a	b	c
e	e	a	b	c
a	a	e		b
b	b		a	
c	c	b		a

