University of Swaziland

SUPPLEMENTARY EXAMINATION, 2016/2017

B.Sc. III, B.Ed III, BASS III

Title of Paper

: Abstract Algebra I

Course Number

: M323

Time Allowed

: Three (3) Hours

Instructions

- 1. This paper consists of TWO (2) Sections:
 - a. SECTION A (40 MARKS)
 - Answer **ALL** questions in Section A.
 - b. SECTION B
 - There are FIVE (5) questions in Section B.
 - Each question in Section B is worth 20 Marks.
 - Answer ANY THREE (3) questions in Section B.
 - If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.
- 2. Show all your working.

Special Requirements: None

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: Answer ALL Questions

- (10)A1. (a) Find all subgroups of \mathbb{Z}_{18} and draw the lattice diagram
 - (b) Let G and H be groups, $\varphi: G \to H$ be an insomorphism of G and H and let e be the identity of G. Prove that $(e)\varphi$ is the identity in H and that $(a^{-1})\varphi = [(a)\varphi]^{-1}$ for all $a \in G$. (10)
- A2. (a) For each binary operation * defined on a set G, say whether or not * gives a group structure on the set
 - (i) Define * on \mathbb{Q}^+ by $a*b = \frac{ab}{2} \quad \forall a,b \in \mathbb{Q}^+$ (5)
 - (ii) Define * on \mathbb{R} by $a * b = ab + a + b \quad \forall a, b \in \mathbb{R}$ (5)
 - (b) Show that \mathbb{Z}_6 and S_3 are NOT isomorphic and that \mathbb{Z} and $5\mathbb{Z}$ are isomorphic. (10)

SECTION B: Answer any THREE Questions

QUESTION B1 [20 Marks]

- B1. (a) (i) Define the notion of "NORMAL SUBGROUP" of a group (4)
 - (ii) Verify that the subgroup $H = \{(1), (123), (132)\}$ is a normal subgroup of S_3

(6)

(b) Prove that every subgroup of a cyclic group is cyclic. (10)

QUESTION B2 [20 Marks]

- B2. (a) Prove that a non-abelian group of order 2p, p prime, contains at least one element of order p. (6)
 - (b) Consider the following permutations in S_6

$$P = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 5 & 6 & 2 \end{pmatrix} \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{pmatrix}$$

Compute (i) $P\sigma$ (ii) σ^2 (iii) σ^{-1} (iv) σ^{-2} (v) σ^2 (10)

(4)

(c) Write the permutations in (b) as a product of disjoint cycles in S_6

QUESTION B3 [20 Marks]

- B3. (a) Suppose that m, a, b are positive integers such that (a, m) = 1 and (b, m) = 1Prove that (ab, m) = 1 (10)
 - (b) (i) Express d = (2190, 465) as an integral linear combination of 2190 and 465 (5)
 - (ii) Solve the following $3x \equiv 5 \pmod{11}$ (5)

QUESTION B4 [20 Marks]

- B4. (a) (i) State Cayley's theorem (4)
 - (ii) Let (\mathbb{R}^+,\cdot) be the multiplicative group of all positive real numbers and $(\mathbb{R},+)$ be the additive group of all real numbers. Show that (\mathbb{R}^+,\cdot) is isomorphic to $(\mathbb{R},+)$ (6)
 - (b) (i) Find the number of generators in each of the following cyclic groups \mathbb{Z}_{30} and \mathbb{Z}_{42}
 - (ii) Determine the right cosets of H = <4> in \mathbb{Z}_8 (5)

QUESTION B5 [20 Marks]

B5. (a) Show that \mathbb{Z}_p has no proper subgroup if p is prime	(6)
(b) Show that if $(a, m) = 1$ and $(b, m) = 1$ then $(ab, m) = 1$ $a, b, m \in \mathbb{Z}$ (c) Prove that every group of prime order is cyclic	(6) (8)