UNIVERSITY OF SWAZILAND

126

EXAMINATION, 2016/2017

BASS III, B.Ed (Sec.) III, B.Sc. III

Title of Paper : Real Analysis

Course Number : M331

Time Allowed : Three (3) Hours

Instructions

- 1. This paper consists of SIX (6) questions in TWO sections.
- 2. Section A is **COMPULSORY** and is worth 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1, B2 B6) on a new page and clearly indicate the question number at the top of the page.
- 6. You can answer questions in any order.

Special Requirements: NONE

This examination paper should not be opened until permission has been given by the invigilator.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [40 Marks]

- (a) Consider a set $A \subseteq \mathbb{R}$.
 - i. Explain what it means to say that the set A is bounded above and define $\sup(A)$ for such a set. (3)
 - ii. Explain what it means to say that the set A is bounded below and define inf(A) for such a set. (3)
- (b) Let $A = \{x \in \mathbb{R} : x^2 < 2\}$. Find (if they exist) min(A), max(A), inf(A), and $\sup(A)$. Is A bounded? (6)
- (c) Give the $\varepsilon \delta$ definition for $\lim_{x \to a} f(x) = L$, where *f* is a real-valued function.
- (d) Give the ε *N* definition for $\lim_{n\to\infty} x_n = x$ where $\{x_n\}$ is a sequence of real numbers. (3)
- (e) Fill in the blanks:

A sequence
$$\{x_n\}$$
 diverges to ∞ if for every _____ there is _____ such that _____ whenever _____. (4)

- (f) True or False? Explain your answer.
 - i. If f is continuous at c, then f is differentiable at c. (3)
 - ii. If f is integrable on [a, b], then f is continuous on [a, b]. (3)

iii. If
$$\lim_{n \to \infty} x_n = 0$$
, then the series $\sum_{n=1}^{\infty} x_n$ is convergent. (3)

iv. If the series
$$\sum_{n=1}^{\infty} x_n$$
 is convergent, then it converges absolutely. (3)

- (g) State the test for divergence for a series $\sum x_n$. (3)
- (h) State Riemann's integrability criterion. (3)

END OF SECTION A – TURN OVER

(3)

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]

Test each of the following series for convergence or divergence.

(a)
$$\sum_{n=1}^{\infty} \frac{n^2}{5n^2 + 4}$$
. (4)
(b) $\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{3^n}$. (4)
(c) $\sum_{n=1}^{\infty} \left(\frac{n^2 + 1}{2n^2 + 1}\right)^n$. (4)

(d)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n}.$$
 (8)

QUESTION B3 [20 Marks]

(a) Give a precise $\varepsilon - N$ argument to show that

$$\lim_{n \to \infty} \frac{n^2}{2n^2 + 1} = \frac{1}{2}.$$

(7)

(b) i. State the Cauchy convergence criterion for sequences. (3)
 ii. Use the Cauchy convergence criterion to show that the sequence

$$\left\{\frac{n+1}{n}\right\}$$

is convergent.

(c) The sequence $x_n = (-1)^n$ does not converge. For what values of $\varepsilon > 0$ is it nonetheless true that there exists a natural number N such that

$$|x_n-1|<\varepsilon,\quad\forall n\geq N?$$

(3)

(7)

TURN OVER

 $[0, \pi/2].$

- (a) i. State the Intermediate Value Theorem. (3) ii. Show that the equation $x^2 = \cos x$ has a solution in the interval
- (b) Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Explain what each of the following statements means.
 - i. f is right-differentiable at $c \in [a, b)$. (2)
 - ii. *f* is right-differentiable at $c \in [a, b)$. (2)
- (c) Give an example of a function that is left-differentiable and right-differentiable at a point *c* in its domain but not differentiable at *c*. (3)
- (c) Let f(x) = 10x 11. Use an $\varepsilon \delta$ argument to show that $\lim_{x \to 2} f(x) = 9$. (7)

QUESTION B5 [20 Marks]

- (a) Let $f : [0,1] \to \mathbb{R}$ be defined by $f(x) = x^3$ and let $P = \{0, 0.1, 0.4, 1\}$. Find U(P, f) and L(P, f). (6)
- (b) State the Fundamental Theorem of Calculus.
- (c) Let $f : [-1, 1] \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} 0, & \text{if } x \leq 0, \\ 1 & \text{if } x > 0. \end{cases}$$

Show that *f* is Riemann integrable and find $\int_{-1}^{1} f(x) dx$. (10)

QUESTION B6 [20 Marks]

(a) Prove or disprove: If $\sum x_n$ and $\sum y_n$ are convergent series, then $\sum x_n y_n$ is convergent. (4)

(b) Prove: If
$$\sum_{n=1}^{\infty} x_n$$
 is convergent, then $\lim_{n \to \infty} x_n = 0.$ (8)

(c) Prove: If the series $\sum_{n=1}^{\infty} x_n$ converges absolutely, then it is convergent. (8)

_END OF EXAMINATION PAPER

(3)

(4)