University of Swaziland

Final Examination, 2016/2017

B.Sc./ B.Ed./ BASS III

Title of Paper : Dymanics II
Course Number : M355
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

A1. Give definitions and examples of
(a) virtual displacements,
(b) homonomic system,
(c) rheonomic system,
(d) non-conservative system,
(e) generalized force.
A. 2 Two masses m_{1} and m_{2} are connected by inextensible string of negligible mass which passes over a fixed frictionless pulley of negligible mass.
(a) Derive Lagrange equation
(b) Find the acceleration of m_{1},
(c) Introduce generalized momentum,
(d) Construct Hamiltonian,
(e) Write down Hamilton equations.

A3. Prove that the generalized momentum conjugate to cyclic coordinate is conserved.
A4. Check if the transformation $Q=q \tan p, \quad P=\ln \sin p$ is canonical.
A5. (a) Define Poisson bracket between two physical quantities,
(b) Prove that for any function A of $q, p, t[A, A]=0$.

A6. Derive formula for natural boundary condition.
A7. Find extremals of

$$
\begin{align*}
& V[y(x)]=\int_{0}^{1}\left[\left(y^{\prime}\right)^{2}+1\right] d x \\
& y(0)=1, \quad y(1) \text { is free } \tag{4}
\end{align*}
$$

A8. Consider the functional

$$
V[z(x, y)]=\iint_{\Delta} F\left(x, y, z, \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right) d x d y
$$

Write down Ostrogradski equation.

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B1 [20 Marks]

B1. (a) Show that $\sum_{\nu=1}^{N} \overline{F_{\nu}} \cdot \delta \bar{r}_{\nu}=\sum_{i=1}^{n} Q_{i} \delta q_{i}$. in the usual notations.
(b) Prove the cancellation of Dot property lemma, $\frac{\partial \dot{\bar{r}}_{\nu}}{\partial \dot{q}_{i}}=\frac{\partial \bar{r}_{\nu}}{\partial q_{i}}$.
(c) Masses m_{1} and m_{2} are located on smooth inclined planes of fixed angles α_{1} and α_{2} respectively and are connected by an inextensibe string of negligible mass over a smooth peg. Set up the Lagrangian and find the acceleration of mass m_{1}.
(d) The Lagrangian for a certain dynamical system is given by
$L=\frac{1}{2}\left((1+2 k) \dot{\theta}^{2}+2 \dot{\theta} \dot{\phi}+\dot{\phi}^{2}\right)-\frac{n^{2}}{2}\left((1+k) \theta^{2}+\phi^{2}\right)$,
where $n, k>0$. Write down Lagrange's equations.

QUESTION B2 [20 Marks

B2. (a) Let the potential energy be $\Pi=\Pi(q, \dot{q})$. Show that $T+\Pi-\sum_{i=1}^{n} \dot{q}_{i} \frac{\partial \Pi}{\partial \dot{q}_{i}}=$ const, in the usual notations
(b) Two identical mathematical pendulums are hanged to the ceiling. The masses are connected with a spring of stiffnees c. Derive Lagrange's equations.

QUESTION B3 [20 Marks]

B3. (a) Using just definitions of Hamiltonian $H(q, p, t)$,
(i) derive Hamilton equations and hence
(ii) show that for conservative system $H=T+\Pi$.
(b) Let $A(q, p, t)$ be an arbitrary dynamic variable and $H(q, p, t)$ be a Hamiltonian of a sytem.
(i) Show that $\frac{d A}{d t}=\frac{\partial A}{\partial t}+[A, H]$,
(ii) and hence prove that $\omega q_{2} \cos \omega t-p_{2} \sin \omega t$ is a constant of motion if
$H=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}\right)+\frac{1}{2} \omega^{2}\left(q_{1}^{2}+q_{2}^{2}\right), \omega$ is a constant.
(c) Apply Poisson bracket to show that transformation
$q=\sqrt{\frac{P}{\pi \omega}} \sin (2 \pi Q), p=\sqrt{\frac{\omega P}{\pi}}(\cos 2 \pi Q)$ is canonical.

QUESTION B4 [20 Marks]

B4. (a) State and prove the Main Lemma of calculus of variations.
(b) Consider a functional $V[y(x)]=\int_{x_{o}}^{x_{1}} F\left(y, y^{\prime}\right) d x$.

Derive Beltami identity.
(c) Let $F\left(y, y^{\prime}\right)=y^{\prime 2}+y^{2}$. Construct
(i) Euler equation,
(ii) Beltrami identity.

QUESTION B5 [20 Marks]

B5. (a) Find the extremals of
(i) $V\left[y_{1}(x), y_{2}(x)\right]=\int_{0}^{\frac{\pi}{4}}\left(y_{1}^{2}+y_{1}^{\prime} y_{2}^{\prime}+y_{2}^{\prime 2}\right) d x$
$y_{1}(0)=1, \quad y_{1}\left(\frac{\pi}{4}\right)=2, \quad y_{2}(0)=\frac{3}{2}, \quad y_{2}\left(\frac{\pi}{4}\right)$ is free.
(ii) $V[y(x)]=\int_{0}^{1}\left[\left(y^{\prime \prime}\right)^{2}+y^{\prime}+2 x\right] d x$
$y(0)=0, \quad y(1)=y^{\prime}(0)=y^{\prime}(1)=1$.
(b) Find Ostrogradski's equation for the following functional.
$V[z(x, y)]=\iint_{\Delta}\left[\left(\frac{\partial z}{\partial x}\right) \cdot\left(\frac{\partial z}{\partial y}\right)+2 g(x, y) z\right] d x d y$.
where $z(x, y)$ is known on the boundary of region Δ.

