B.Sc./ B.Ed./ BASS III

Title of Paper : Dymanics II
Course Number : M355
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: NONE

This examination paper should not be opened until permission has been given by the invigilator.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

A1. Give definition and example of
(a) degree of freedom,
(b) generalized coordinate,
(c) scleronomic system,
(d) conservative system
(e) transformation equation
A. 2 A particle of mass M is noving down in the field of gravity.
(a) Derive Lagrange's equation,
(b) Solve it,
(c) Introduce generalized momentum,
(d) Construct Hamiltonian,
(e) Derive Hamilston's equations

A3. For a certain system the kinetic energy T and potential energy Π are given by $2 T=$ $m l^{2}\left(\dot{x}^{2}+\dot{y}^{2} \sin ^{2} x\right), \quad \Pi=-m g l \cos x$.
Show that coordinate y is cyclic.
A4. Give at least two conditions for canonical transformation.
A5. Consider a dynamic variable $A(q, p, t)$ and let $H(q, p, t)$ be a Hamiltonian of a system. Prove that $\frac{d A}{d t}=\frac{\partial A}{\partial t}+[A, H]$ in the usual notations.

A6. Define,
(a) functional,
(b) variation of a function.

A7. Find the extremals of
$\left.v[y(x)]=\int_{0}^{\frac{\pi}{2}}\left(y^{\prime}\right)^{2}-y^{2}\right] d x, \quad y(0)$ is free, $\quad y\left(\frac{\pi}{2}\right)=0$
A8. For the functional
$v\left[y_{1}, y_{2}, \cdots, y_{n}\right]=\int_{x_{0}}^{x_{1}} F\left(x, y_{1}, y_{2}, \cdots, y_{n} y_{1}^{\prime}, y_{2}^{\prime}, \cdots, y_{n}^{\prime}\right) d x$
write Euler's equations.

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B1 [20 Marks]

B1. (a) Prove the Interchange of d and ∂ Lemma
$\frac{d}{d t} \cdot\left(\frac{\partial \bar{r}_{\nu}}{\partial q_{i}}\right)=\frac{\partial \overline{\bar{r}}_{\nu}}{\partial q_{i}}$.
(b) Given Lagrange's equations (L.E.) in general case. Derive L.E. for conservative system.
(c) Two particles of mass m_{1} and m_{2} are connected by a light inextensible string of length l which passes through a smooth hole in a smooth horizontal table. The mass m_{2} lies on the table at a distance r from the hole. A gravitation field g acts on this system. If the mass m_{1} moves only in vertical line, find the equation of motion for both masses.
(d) The Lagrangian for a certain system is given by
$L=\frac{m}{2}\left((\dot{x}-w y)^{2}+(\dot{y}+w x)^{2}-\Pi(x, y)\right.$
Write down Lagrange's equations.

QUESTION B2 [20 Marks]

B2. (a) Prove that for holonomic, scleronomic system the following formula is valid
$\sum_{i=1}^{n} \dot{q}_{i} \frac{\partial T}{\partial \dot{q}_{i}}=2 T$.
(b) Derive the equation of motion for the system made up of a mathematical pendulum for which the pivot point (of negligible mass) is free to move horizontally.

QUESTION B3 [20 Marks]
B3. (a) Using just definition of Hamiltonian $H(q, p)$ derive Hamilton's equations.
(b) The Lagrangian for a certain system is given in Quesiton B1(d). Find
(i) Generalized momenta,
(ii) Hamiltonian,
(iii) Hamilton's equations.
(c) Derive Hamilton's equations in Poisson's formulation.

QUESTION B4 [20 Marks]

B4. (a) Derive Euler's equation corresponding to the functional

$$
\begin{equation*}
v[y(x)]=\int_{x_{0}}^{x_{1}} F\left(x, y(x), y^{\prime}(x)\right) d x, \quad y\left(x_{0}\right)=y_{0}, y\left(x_{1}\right)=y_{1} \tag{7}
\end{equation*}
$$

(b) Derive an alternative form of Euler equation.
(c) Let $F\left(y, y^{\prime}\right)=y \sqrt{1+\left(y^{\prime}\right)^{2}}$. Construct
(i) Euler's equation,
(ii) Beltrami's identity.

QUESTION B5 [20 Marks]

B5. (a) Find the extremals of
(i) $v[y(x), z(x)]=\int_{0}^{1}\left(y^{\prime 2}+z^{\prime 2}+y^{\prime} z^{\prime}\right) d x$,
$y(0)=z(0)=0, \quad y(1)$ is free, $z(1)=2$.
(ii) $v[y(x)]=\int_{0}^{1}\left(y^{\prime \prime 2}+1\right) d x$,
$y(0)=0, y^{\prime}(0)=y(1)=y^{\prime}(1)=1$.
(b) Write down Ostrogradski's equation for the following functionals
(i) $v[z(x, y)]=\iint_{D} F\left(x, y, z, \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right) d x d y$,
(ii) $v[z(x, y)]=\iint_{D}\left[\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}\right] d x u y$.

