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1. 	This paper consists of SIX (6) questions in TWO sections. 

2. 	Section A is COMPULSORY and is worth 40%. Answer ALL questions 
in this section. 

3. 	Section B consists of FIVE questions, each worth 20%.· Answer ANY THREE 
(3) questions in this section. 

4. 	Show all your working. 

5. 	Start each new major question (A1, B2 B6) on a new page and clearly 
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6. 	You can answer questions in any order. 
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SECTION A [40 Marks]: ANSWER ALL QUESTIONS 

QUESTION Al [40 Marks] 

Al (a) 	What values should the parameters a and b have so that the following 
multi-step method is consistent? [4 marks] 

(b) Use the Taylor series expansions and the method of undetermined coefficients 
to derive the two-step Adams-Bashforth (Explicit) method. [6 marks] 

(c) 	A numerical scheme has been used to approximate the solution of 

dy = t2 _ y2 
dt 

and has given the following estimates, to 6 decimal places 

y(0.3) ~ 1.471433, y(0.32) ~ 1.447892 

Now use the 2-step, explicit linear multistep scheme 

Yn+2 - 1.6Yn+l + 0.6Yn = h(5Jn+l - 4.6Jn) 

to approximate y(0.34). 	 [5 Marks] 

(d) Find the Lipschitz constant for J(t, y) in the initial value problem [3 marks] 

y' = -(1 + t2)y + sin t, yeO) = 1, 0 S t S 1. 

(e) 	Prove that the constant function y(x) = a that fits inconsistent measurements 
Yl, Y2, ... ,Yn in the least-squares sense corresponds to the mean value [4 marks] 

1 n 

a= LYk 
n k=l 

(f) Use the Gram-Schmidt procedure to construct <PI, CP2, CP3 where {CPo, CPl, CP2, CP3} 
is an orthogonal set on [-1, 1] with respect to the weight function w(x) = 1, 
given that CPo (x ) = 1. [5 marks] 

(g) Write down an 0(h2) finite difference scheme for the following boundary 

value problem: 


d2u 
- dx2 + c(x)u = J(x), 0 s x S 1. 

u(O) = a, u(l) = fJ 

where c(x) ;:::: 0, J(x) are given continuous functions in the interval 

[0,1] and Q and fJ are known boundary values of u(x). [4 marks] 


au au 
(h) Consider the following first order PDEs at + aax = 0, (a> 0) 

i. Derive the finite difference scheme based on forward difference in time 
and backward difference in space. [4 marks] 

ii. What is the order of accuracy for this scheme? [5 marks] 
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SECTION B: ANSWER ANY THREE QUESTIONS 


QUESTION B2 [20 Marks] 

B2 (a) Suppose that {<Po, <PI, , .. ,<Pn} is an orthogonal set offunctions on an interval [a, b] with 
respect to the weight function w(x) and the least squares approximation to f(x) on 
[a, b] with respect to w(x) is 

n 

Pn(x) = LTj<pj(X) 
j=O 


where, for each j = 0,1, ... ,n. By minimising the least squares error, 


show that 

where 	 [7 marks] 

0:j = lb w(x)[<pj(x)]2 

(b) 	Let f(x) be a function of period 27r such that 


7r<x<O 

f(x) = { ~: 0< x < 7r. 

i. 	Show that the least squares trigonometric polynomial that approximates f(x) in 
the interval -7r < X < 7r is [10 marks] 

1 n 1 
2 +L k7r [(_I)k -IJ sinkx 

k=l 

~ 2 [sinx+~sin3x+ Isin5x+ ... + ( 1 )sin[(2n-I)X]]
2 7r 3 5 2n-1 

for n = 1,2, ... 
ii. 	By giving an appropriate value to x, show that as n ---+ 00. [3 marks] 

1f 111 
-=1- +---+ ... 
435 7 

QUESTION B3 [20 Marks] 

B3 (a) A multi-step method for solving the initial value problem (IVP) [6 marks] 

Y' (x) = f (x, y), a ::; x ::; b, y(a) = 0: 

is defined by the difference equation 

Yn+2 = - 3Yn + 4Yn+l - 2hf(xn,Yn); n = 0,1, ... , N - 2 

with starting values Yo and Yl' Use this method to solve 

y'(x) = 2 - y, 0 ::; x ::; 1, y(O) = 0 

lfor y(0.2) and y(0.3) with h = 0.1, and starting values Yo = 0 and Yl = 2 - e-O. . 
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(b) Derive the following 3-step Adams-Bashforth explicit method 

h 
Yi+l = Yi + 12 [23f(ti,Yi) - 16f(ti - 1 , Yi-l) + 5f(ti- 2,Yi-2)] , 

with given values of YO,Yl,Y2 for solving the IVP y'(t) = f(t,y(t)). [7 marks] 

(c) Analyze the consistency, zero-stability and convergence of the 3-Step Adams-Bashforth 
method. [7 marks] 

QUESTION B4 [20 Marks] 

B4 (a) The Poisson equation 

82u B2u-+- 12xy, o < x < 1.5, 0 < Y < 1,8x2 8y2 

is to be solved subject to 

u(x,O) = 0, u(x, 1) = 6x, o < x < 1.5; 
u(O, y) = 0, u(1.5,y) 3y2, O<y<1. 

Use finite differences with h = k = 0.5 to find an approximate solution to 
this equation. [10 Marks] 

(b) By replacing Y' and y" using central difference schemes, write the general discretization 
on 5 sub-intervals of the following boundary value problem 

Y" = xy' - 3y + eX, 0::; x S 1 

y(O) 1, y(l) = 2 

in matrix-vector form Aw = b (Do NOT solve!!!) [10 marks] 

QUESTION B5 [20 Marks] 

B5 (a) Derive the Taylor method of order two 

Yi+l = Yi + h [f(ti1Yi) ~ ~f'(ti'Yi)] 
for solving the initial-value problem y'(t) f(t,y(t)), y(a) = Cl:. Assume that 
y(t) E C(3) [a, b]. [6 marks] 

(b) Use the Taylor method of order two solve the initial-value problem 


, l+t ().

Y = 1 1 < t < 2, y 1 = 2, wIth h = 0.5+y . 

[6 marks] 

(c) Use the 4th-order Runge-Kutta method to solve the initial-value problem 

y' = 1 + (t y)2, 2 < t < 3, y(2) = 1, with h = 0.5 

[8 marks] 



, (-I r,a 
UNISWA MAY EXAMINATIONS ACADEMIC YEAR 2016/2017 
COURSE NAME AND CODE: M 411 NUMERICAL ANALYSIS II PAGE 4 

QUESTION B6 [20 Marks] 

B6 (a) Prove that the quadratic least squares approximation to f(x) = eX on [-1,1] is 

215 (e2 - 7) x 3x 3 ( e2 11)p. ()2 X = +
4e e 4e 

[7 Marks] 

(b) Find an equation of the form f (x) = ae x2 +bx3 that approximates the data in the table 

1 

2 

in the least squares sense. [9 Marks] 

(c) Derive the explicit finite finite difference scheme for the heat equation. 

[4 Marks] 

OF EXAMINATION PAPER'--___________ 


