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1. 	This paper consists of SIX (6) questions in TWO sections. 

2. 	Section A is COMPULSORY and is worth 40%. Answer ALL questions 
in this section. 

3. 	Section B consists of FIVE questions, each worth 20%. Answer ANY THREE 
(3) questions in this section. 

4. Show all your working. 
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SECTION A [40 Marks]: ANSWER ALL QUESTIONS 

QUESTION Al (40 Marks] 

Al (a) Find the quadratic least squares approximation of the function 

f(x)=x4 +x+2 

on the interval [-1,1] [6 marks] 

(b) Use the Gram-Schmidt process to construct orthogonal polynomials 

(/JI(x),(h(x) 

on the interval [0,1 j [4 marks] 

(c) Derive the recurrence formula 

To(x) = I, Tl(X) = 1, Tn+l(x) + Tn-1(x) = 2xTn(x) 

where Tn are Chebyshev polynomials of order n defined by [4 marks] 

Tn(x) = cos(narccos(x)), for each n;?:: 0 with x E [-1,1] 

(d) Show that f(t, y) tlYI satisfies the Upschitz condition on [4 marks] 

D {(t, y)1 1:::; t :::; 2, :::; Y:::; 4} 

(e) Consider the following multi-step method for approximating the solution of an 
initial value problem, 

h 
Yi+l 2Yi - Yi-l + 4 [fi-2 + 3fi-l], 

Yo a, Yl alJ Y2 = a2· 

Discuss the stability, consistency and convergence of this method. [7 marks] 
(f) A numerical scheme has been used to approximate the solution of 

dy
dt = t + y, y(O) 3 

and has produced the following estimates, to 6 decimal places 

y(O.4) = 4.509822, y(0.45) = 4.755313 

Now use the 2-step, explicit linear multistep scheme 

YH2 - YHI h(1.5fHl - O.5fi) 

to approximate y(0.5). [4 marks] 
(g) Derive the explicit finite finite difference scheme for the heat equation. [4 marks] 

(h) Consider the finite difference scheme for solving a parabolic partial differential equation, 

uj-l -o:uj'_l + (1 + 2o:)uj - o:uj'+!. 

Show that the scheme is unconditionally stable by performing a Von-Neumann 
analysis. [7 marks] 
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SECTION B: ANSWER ANY THREE QUESTIONS 


QUESTION B2 [20 Marks] 

n 

L 	 (a) Suppose f E Ora, bj and that a polynomial Pn(x) = LTkXk i~ required to minimize 
k=O 

the error 

lb [J(x) - Pn(X)]2 dx. 

Derive the normal equations that can be used used to evaluate the coefficients Tk (k 
0,1,2, ... , ) [5 marks] 

(b) Prove that the quadratic least squares approximation to f(x) = eX on 1,1] 
is [7 marks] 

P (x) = 15 (e2 
7) x2 + 3x _ 3 (e2 11)

2 4e e 4e 

(c) Prove the orthogonality property of Chebyshev polynomials with respect to the weight 
1 

function w(x) 
\/1- x 2 

1
1 Tm(x)Tn(x) dx if m =1= n
{~, 
2 	 if m=n-1 \11- x 2' 

[8 marks] 

QUESTION B3 [20 Marks] 

B3 	 (a) The 4th order Milne's method for solving initial value problems is given by 

4h 
Yi+I Yi-3 + 3 [2fi - fi-l + 2fi-2] . 

Analyse the stability of this method. 	 [4 marks] 

(b) Use any method to derive the following 2-Step Adams-Moulton method [8 marks] 

Yo =a, YI aI, 

h 


Yi+l =Yi + 12 [5f(ti+b Yi+l) + 8f(ti )Vi) - f(ti-I, Vi-I)], i = 1,2, ... , N 1 

(c) 	 Use the Runge-Kutta method of order 4 withh = 0.1 to approximate the solution of 
the following initial value problem at t = 2.2 

y'(t) = 1 + (t - Y?, 2::; t ::; 3, y(2) 1 

[8 marks] 

QUESTION B4 [20 Marks] 

B4 (a) Consider the elliptic partial differential equation 

U XX + Uyy =0, 0 :::; x ::; 2, 0 :::; y ::; 3, 

u(x,O) =x/2, u(x,3) = I, 0:::; x :::; 2, 

u(O, y) =y/3, u(2, y) = I, 0 < Y ::; 3. 



·-"'- ..
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Use finite differences on a uniform grid, with h = k = 1, to approximate both u(l, 1) 
and u(l, 2). [10 marks] 

(b) Write down an O(h2) finite difference scheme for the following boundary value problems 
and express the finite difference scheme in matrix form AU - F 

u" + 2xu' + 3u - sin(x) = 0, a:::; x :::; b. 
u'(a) + u(a) = a, u'(b) + u(b) = fJ 

where p(x), q(x) and f(x) are given continuous functions in the interval [a, bl and a 
and fJ are given constant values. [10 marksl 

QUESTION B5 [20 Marks] 

B5 (a) Let f(x) be a function defined as 

-7f<x<O 
f(X)={ ~+:: 0< x < 7f. 

i. 	Show that the least squares trigonometric polynomial that approximates f(x) in 
the interval -7f < x < 7f is 

2L ---"----:---"- cos kx 
n 

k=l 

_~ ± [ cos3x cos5x cos7x cos9x ] 
- 2 + 7f 1 + 32 + 52 + + 92 + ... 

forn 1,2, ... 	 [9 marks] 
ii. By giving an appropriate value to x, show that as n -7 00 

8 

[4 marks] 

(b) 	If an O(k2 + h2
) numerical method for solving the heat equation is constructed using 

the central difference quotient 
to approximate Ut; and the usual difference quotient to approximate U xx , 

show that the resulting difference problem is 

defining A appropriately. 	 [7 marks] 
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QUESTION B6 [20 Marks] 

B6 (a) Use Euler's method with h = 0.1 to approximate the solution of the 
initial value problem 

ylll + 3y" + 3y' +y = -4sint, yeO) 1, y'{O) 1, yl/(O) -1 

at t 0.2. 	 [6 Marks] 

(b) 	The Legendre polynomials are given by <Po(x) = 1, <Pl(X) = x and satisfy 

the recurrence relation 


2n 1 n 
<Pn+l(x) = n + 1 x<Pn(x) - n + 1<Pn-l(X) , for n ~ 1. 

i. Use the recurrence relation to find <P2 (x), <P3 (x) and <P4 (x). 	 [2 marks] 
ii. The first three Legendre polynomials are defined on [-1, 1] as 

, () 2 1(/J2 X = X - ­
3 

Use Legendre polynomials of degree n 2 with weight w(x) 1 to approximate 
f(x) = Ixl on the interval 1,1]. (6 marks] 

(c) Find the continuous least-squares trigonometric polynomial 82 (x) for 
x2f(x) = on [-7r,7r]. 	 [6 marks] 

_______-----,END OF EXAMINATION 


