University of Swaziland

Final Examination, 2016/2017
B.Sc. IV, BASS IV, BED. IV

Title of Paper : Abstract Algebra II
Course Number : M423
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: NONE
This examination paper should not be opened until permission has been given by the invigilator.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

A1. (a) Let F be a field. Explain what is meant by saying "The polynomial $f(x)$ is irreducible in $F^{\prime \prime}$,
(b) State Eisenstein's irreducibility criterion
(c) Determine the irreducibility or otherwise of
(i) $x^{3}-7 x^{2}+3 x+3 \in \mathbb{Q}[x]$
(ii) $2 x^{10}-25 x^{3}+10 x^{2}-30 \in \mathbb{Q}[x]$
(d) Suppose

$$
\begin{equation*}
f(x)=x^{5}+5 x^{4}+3 x+2 \quad g(x)=2 x^{2}+1 \tag{5}
\end{equation*}
$$

are polynomials $\mathbb{Z}_{7}(x)$. Find $q(x)$ and $\nu(x)$ in \mathbb{Z}_{7} as described in the division algorithm so that

$$
\begin{equation*}
f(x)=q(x) g(x)+\nu(x) \tag{5}
\end{equation*}
$$

with $\nu(x)=0$ or degree $\nu(x)<$ degree $g(x)$
A2. (a) Let α be an element of an extension field(s) of F. Explain what is meant for α to be
(i) Algebraic over F
(ii) Transcendental over F
(b) Consider the polynomial $x^{3}+x^{2}+1$
(i) Show that $x^{3}+x^{2}+1$ is irreducible over \mathbb{Z}_{2}
(ii) Let α be a zero of $x^{3}+x^{2}+1$ in the extension field of \mathbb{Z}_{2}. Show that $x^{3}+x^{2}+1$ factors into three linear factors in $\mathbb{Z}_{2}(\alpha)$ by finding this factorization.

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3 [20 Marks]

(a) Use Fermat's theorem to complete the remainder when 8^{123} is divided by 13
(b) For each of the following, find irred (α, θ) and $\operatorname{deg}(\alpha, \theta)$

$$
\begin{equation*}
\text { (i) } \sqrt{3}+i \tag{7}
\end{equation*}
$$

(ii) $\sqrt{\frac{1}{5}+\sqrt{7}}$
(c) Show that if a polynomial $f(x) \in Z(x)$ is reducible over \mathbb{Q} then its also reducible over \mathbb{Z}

QUESTION B4 [20 Marks]

(a) Show that for a field F, the set of all matrices of the form

$$
\left(\begin{array}{cc}
a_{11} & a_{12} \tag{6}\\
0 & 0
\end{array}\right) \quad a_{i j} \in F
$$

is a right ideal but not a left ideal of $M_{2}(F)$
(b) Let $\varphi_{\alpha}: \mathbb{Z}_{7}(x) \rightarrow \mathbb{Z}_{7}$. Evaluate each of the following for the indicated evaluation homomorphism
(i) $\varphi_{2}\left(3 x^{79}+5 x^{53}+2 x^{43}\right)$
(ii) $\varphi_{3}\left[\left(x^{3}+2\right)\left(4 x^{2}+3\right)\left(x^{7}+3 x^{2}+1\right)\right]$
(c) Show that if D is an integral domain, then $D[x]$ is also an integral domain

QUESTION B5 [20 Marks]

(a) Prove that every field is an integral domain
(b) Which of the following are rings with the usual addition and multiplication
(i) $\{a+b \sqrt{2}: a, b \in \mathbb{Z}\}$
(ii) $\{r i: r \in \mathbb{R}, \quad i=-1\}$
(c) Mark each of the following true or false
(i) Every finite integral domain is a field.
(ii) Every division ring is commutative.
(iii) \mathbb{Z}_{6} is not an integral domain

QUESTION B6 [20 Marks]

(a) Classify each of the given $\alpha \in \vartheta$ as algebraic or transectional over the given fieLd F.

If α is algebraic over F find $\operatorname{deg}(\alpha, F)$
(i) $\alpha=1+i, F=\mathbb{Q}$
(ii) $\alpha=\sqrt{\pi}, F=Q[\pi]$
(iii) $\alpha=\pi^{2}, F=\mathbb{Q}$
(iv) $\alpha=\pi^{2}, F^{\prime}=Q\left(\pi^{2}\right)$
(v) $\alpha=\pi^{2}, F=Q(\pi)$
(b) Show that the ring $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is NOT a field.
(c) Find a polynomial of degree >0 in $\mathbb{Z}_{4}(x)$ that is a unit.
(a) Suppose F is a field f is an irreducible polynomial over F and f, h are polynomials over F such that f divides $g h$. Show that either f divides g or f divides h
(b) Define an ideal N of a ring R
(c) Find all ideals of \mathbb{Z}_{10} and all maximal ideals of \mathbb{Z}_{18}

