UNIVERSITY OF SWAZILAND

158

FINAL EXAMINATION, 2016/2017

B.Sc. IV, BASS IV, BED. IV

Title of Paper : Abstract Algebra II

Course Number : M423

Time Allowed : Three (3) Hours

Instructions

- 1. This paper consists of TWO (2) Sections:
 - a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.

- b. SECTION B
 - There are FIVE (5) questions in Section B.
 - Each question in Section B is worth 20 Marks.
 - Answer ANY THREE (3) questions in Section B.
 - If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.
- 2. Show all your working.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

- A1. (a) Let F be a field. Explain what is meant by saying "The polynomial f(x) is irreducible in F"' (2)
 - (b) State Eisenstein's irreducibility criterion (3)
 - (c) Determine the irreducibility or otherwise of

(i)
$$x^3 - 7x^2 + 3x + 3 \in \mathbb{Q}[x]$$
 (5)

(ii)
$$2x^{10} - 25x^3 + 10x^2 - 30 \in \mathbb{Q}[x]$$
 (5)

(d) Suppose

$$f(x) = x^5 + 5x^4 + 3x + 2 \quad g(x) = 2x^2 + 1$$

are polynomials $\mathbb{Z}_7(x)$. Find q(x) and $\nu(x)$ in \mathbb{Z}_7 as described in the division algorithm so that

$$f(x) = q(x)g(x) + \nu(x)$$

with
$$\nu(x) = 0$$
 or degree $\nu(x) < \text{degree } g(x)$

- A2. (a) Let α be an element of an extension field(s) of F. Explain what is meant for α to be
 - (i) Algebraic over F (3)
 - (ii) Transcendental over F (2)

(5)

(3)

- (b) Consider the polynomial $x^3 + x^2 + 1$
- (i) Show that $x^3 + x^2 + 1$ is irreducible over \mathbb{Z}_2

(ii) Let α be a zero of $x^3 + x^2 + 1$ in the extension field of \mathbb{Z}_2 . Show that $x^3 + x^2 + 1$ factors into three linear factors in $\mathbb{Z}_2(\alpha)$ by finding this factorization. (12)

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3 [20 Marks]

- (a) Use Fermat's theorem to complete the remainder when 8^{123} is divided by 13 (6)
- (b) For each of the following, find irred (α, θ) and deg (α, θ)

(i)
$$\sqrt{3} + i$$
 (7)

(ii)
$$\sqrt{\frac{1}{5} + \sqrt{7}}$$
 (6)

(c) Show that if a polynomial $f(x) \in Z(x)$ is reducible over \mathbb{Q} then its also reducible over \mathbb{Z} (8)

QUESTION B4 [20 Marks]

(a) Show that for a field F, the set of all matrices of the form

$$\left(\begin{array}{cc}a_{11}&a_{12}\\0&0\end{array}\right)\quad a_{ij}\in F$$

160

(6)

is a right ideal but not a left ideal of $M_2(F)$

- (b) Let $\varphi_{\alpha} : \mathbb{Z}_{7}(x) \to \mathbb{Z}_{7}$. Evaluate each of the following for the indicated evaluation homomorphism
 - (i) $\varphi_2(3x^{79} + 5x^{53} + 2x^{43})$

(ii)
$$\varphi_3[(x^3+2)(4x^2+3)(x^7+3x^2+1)]$$
 (10)

(c) Show that if D is an integral domain, then D[x] is also an integral domain (4)

QUESTION B5 [20 Marks]

(a)	Prove that every field is an integral domain	(6)
(b)	Which of the following are rings with the usual addition and multiplication (i) $\{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$	
	(ii) $\{ri:r\in\mathbb{R}, i=-1\}$	(8)
(c)	Mark each of the following true or false	
	(i) Every finite integral domain is a field.	
	(ii) Every division ring is commutative.	
	(iii) \mathbb{Z}_6 is not an integral domain	(6)

QUESTION B6 [20 Marks]

- (a) Classify each of the given $\alpha \in \vartheta$ as algebraic or transectional over the given field F. If α is algebraic over F find deg (α, F)
 - (i) $\alpha = 1 + i, F = \mathbb{Q}$ (ii) $\alpha = \sqrt{\pi}, F = Q[\pi]$ (iii) $\alpha = \pi^2, F = \mathbb{Q}$ (iv) $\alpha = \pi^2, F' = Q(\pi^2)$ (v) $\alpha = \pi^2, F = Q(\pi)$ (10)
- (b) Show that the ring $\mathbb{Z}_2 \times \mathbb{Z}_2$ is NOT a field. (5)
- (c) Find a polynomial of degree > 0 in $\mathbb{Z}_4(x)$ that is a unit. (5)

QUESTION B7 [20 Marks]

QUI	ESTION B7 [20 Marks]	161
(a)	Suppose F is a field f is an irreducible polynomial over F and f, h are polynomials over F such that f divides gh . Show that either f divides g or f divides h	(10)
(b)	Define an ideal N of a ring R	(2)
(c)	Find all ideals of \mathbb{Z}_{10} and all maximal ideals of \mathbb{Z}_{18}	(8)

_____END OF EXAMINATION PAPER_____

٠