UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION, 2016/2017

B.Sc. IV, BASS IV, BED. IV

- Title of Paper : Abstract Algebra II
- Course Number : M423
- Time Allowed : Three (3) Hours

Instructions

- 1. This paper consists of TWO (2) Sections:
 - a. SECTION A (40 MARKS)
 - Answer **ALL** questions in Section A.
 - b. SECTION B
 - There are FIVE (5) questions in Section B.
 - Each question in Section B is worth 20 Marks.
 - Answer ANY THREE (3) questions in Section B.
 - If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.
- 2. Show all your working.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

A1.	(a) (i) Define an ideal N of a ring R .	(5)
	(ii) Find all ideals N of \mathbb{Z}_{12} and all maximal ideal of \mathbb{Z}_{18}	(5)
	(b) (i) Prove that every finite integral domains is field.	
	(ii) Show that for a field F , the set of all matrices of the form	
	$\left(egin{array}{cc} a & b \\ 0 & 0 \end{array} ight)$ for $a,b\in F$	
	is a right ideal but not a left ideal of $M_2(F)$.	(5)
A2.	(a) In a ring \mathbb{Z}_n show that	
	(i) divisor c of zero are those elements that are NOT relatively prime to n .	(5)
	(ii) elements that are relatively prime cant be zero divisors	(5)
	(b) (i) Given an example of a ring R with unity 1 that has a subring \mathbb{R}^1 with unity	
	1 ¹ , where $1 \neq 1^1$	(5)
	(ii) Describe all units in a ring $\mathbb{Z} \times \mathbb{Q} \times \mathbb{Z}$	(5)

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3 [20 Marks]

- (a) Let f be a polynomial over \mathbb{Z} which is irreducible over \mathbb{Z} . Show that f considered as a polynomial over \mathbb{Q} is also irreducible. (10)
- (b) Classify each of the given $\alpha \in \mathbb{C}$ as algebraic or transcendantal over the given field F. If α is algebraic over F, find deg (α, F)
 - (i) $\alpha = 1 + i$, $F = \mathbb{Q}$ (ii) $\alpha = \sqrt{\pi}$, $F = \mathbb{Q}(\pi)$ (iii) $\alpha = \pi^2$, $F = \mathbb{Q}$ (iv) $\alpha = \pi^2$, $F = \mathbb{Q}(\pi)$ (v) $\alpha = \pi$, $F = \mathbb{Q}(\pi^3)$

(10)

QUESTION B4 [20 Marks]

7	- N	Duran that if D	2	1	1. 7.1	· 1.	• , 1	1 • (1	<u>م</u> ۲
٤.	a_1	Prove that if D	is an integral	domain	then $D(x)$	is also an	Integral	domain l	11	11
v	~,	* * * O * O * V * * * * *	TO COLL THEODER COL	GOTTEMATLY .	onon r la	TO GIDO GUI	moogram	domain. (<u>, т</u> ,	1

(b) Decide the irreducibility or otherwise of

(i)
$$x^3 - 7x^2 + 3x + 3 \in Q[x]$$
 (5)

(ii)
$$2x^{10} - 25x^3 + 10x^2 - 30 \in \mathbb{Q}[x]$$
 (5)

QUESTION B5 [20 Marks]

(a)	(i)	Show that the ring $\mathbb{Z}_2 \times \mathbb{Z}_2$ is NOT a field.	(5)
	(ii)	Find a polynomial of degree > 0 in $\mathbb{Z}_4[x]$ that is a unit.	(5)
(b)	(i)	Show that $(a+b)(a-b) = a^2 - b^2$ for all a and b in a ring R, if and only if R is commutative.	(5)
	(ii)	Show that the rings $2\mathbb{Z}$ and $3\mathbb{Z}$ are NOT isomorphic.	(5)

(5)

QUESTION B6 [20 Marks]

- (a) Suppose F is a field f is an irreducible polynomial over F and g, h are polynomials over F such that f divides gh. Show that either f divides h. [10]
- (b) Let $\varphi_{\alpha} : \mathbb{Z}_{7}[x] \to \mathbb{Z}_{7}$. Evaluate each of the following for the indicated evaluation homomorphism.

(i)
$$\varphi_5[(x^3+2)(4x^2+3)(x^7+3x^2+1)]$$
 (5)

(ii)
$$\varphi_4[3x^{106} + 5x^{99} + 2x^{53}]$$

QUESTION B7 [20 Marks]

- (a) Determine whether each of the following polynomials in $\mathbb{Z}[x]$ satisfies an Eissentein criteria for irreducibility.
 - (i) $8x^3 + 6x^2 9x + 24$ (5)
 - (ii) $2x^{10} 25x^3 + 10x^2 30$ (5)
- (b) Let α be a zero of $x^2 + 1$ in an extension field of \mathbb{Z}_3 . Give the multiplication and addition tables for the nine elements of $\mathbb{Z}_3(\alpha)$. (10)

End of Examination Paper_____