UNIVERSITY OF SWAZILAND

EXAMINATION, 2016/2017

BASS IV, B.Ed (Sec.) IV, B.Sc. IV

Title of Paper : Metric Spaces

Course Number : M431

Time Allowed : Three (3) Hours

Instructions

- 1. This paper consists of SIX (6) questions in TWO sections.
- 2. Section A is **COMPULSORY** and is worth a total of 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1, A2, B3 B7) on a new spage and clearly indicate the question number at the top of the page.
- 6. You can answer questions in any order.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PER-MISSION HAS BEEN GIVEN BY THE INVIGILATOR.

UNISWA MAIN EXAMINATIONS COURSE NAME AND CODE: M431 Metric Spaces

SECTION A: ANSWER ALL QUESTIONS

QUESTION A1 [20 Marks]

(a) i. Give a precise definition of a metric space. ii. For $x = (x_1, x_2)$ and $y = (y_1, y_2)$ in \mathbb{R}^2 , define $d : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ by

$$d(x,y) = \begin{cases} 0, & \text{if } x = y, \\ 1, & \text{otherwise.} \end{cases}$$

Show that *d* is a metric on \mathbb{R}^2 .

- (b) Let (X, d) be a metric space. Give precise definitions of the following.
 - i. An open subset *U* of *X*. (2)ii. The distance from $x \in X$ to a subset *A* of *X*. (2) iii. The diameter of a subset *A* of *X*. (2)iv. A convergent sequence $\{x_n\}$ in X. (2)(2)
 - v. A Cauchy sequence $\{x_n\}$ in X.

QUESTION A2 [20 Marks]

(a) Let (X, d) be a metric space.

- i. Prove that for $x \in X$, the open ball B(x, r) is an open subset of X. (4) ii. Prove: If $\{U_1, U_2, \ldots, U_n, \ldots\}$ is any collection of open subsets of X, then $\bigcup U_i$ is open. (4)
- (b) For each metric on \mathbb{R}^2 below, describe (or draw a picture of) the open ball B(0, 1), where 0 = (0, 0). (No need to prove that *d* is indeed a metric.) For $x = (x_1, x_2)$, $y = (y_1, y_2)$ in \mathbb{R}^2 ,

i.
$$d(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 1 & \text{otherwise.} \end{cases}$$
 (3)

ii.
$$d(x, y) = |x_1 - y_1| + |x_2 - y_2|.$$
 (3)

iii.
$$d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}.$$
 (3)

iv.
$$d(x,y) = \max\{|x_1 - y_1|, |x_2 - y_2|\}.$$
 (3)

END OF SECTION A – TURN OVER

(7)

(3)

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3 [20 Marks]

- (a) True or False? (Explain): Every Cauchy sequence $\{x_n\}$ in a metric space (X, d)converges to some $x \in X$. (4)
- (b) Let (X, d) be a metric space and let {x_n} and {y_n} be two sequences in X. Suppose {y_n} is a Cauchy sequence and d(x_n, y_n) → 0 as n → ∞.
 Prove:
 - i. $\{x_n\}$ is also a Cauchy sequence;
 - ii. {x_n} converges to a limit x in X if and only if {y_n} converges to x also.
- (c) Prove that every Cauchy sequence $\{x_n\}$ in a metric space (X, d) is bounded.

(6)

(5)

QUESTION B4 [20 Marks]

3

(a) Let I = [a, b] and let C(I) be the set of all continuous functions on I. For $f, g \in C(I)$, define

$$d(f,g) = \int_a^b |f(x) - g(x)| dx.$$

- i. Show that *d* is a metric on C(I).
- ii. Let I = [0, 1] and let $f(x) = x^2$ and g(x) = x. Find d(f, g). (4)
- (b) For $x, y \in \mathbb{R}$ define *d* by $d(x, y) = (x y)^2$. Show that *d* is not a metric on \mathbb{R} . (4)
- (c) Let (X, d) be a metric space. Show that for $x, y, z \in X$,

$$|d(x,z)-d(y,z)| \leq d(x,y).$$

(4)

(8)

TURN OVER

QUESTION B5 [20 Marks]

1

(a)	i. Define the interior of a subset A of a metric space X .	(2)
	ii. What is the interior of $\mathbb Q$ in $\mathbb R$? Explain your reasoning.	(3)
(b)	i. Define the boundary of a subset A in a metric space X.	(2)
	ii. What is the boundary of the set $A = [0, 1] \cup \{2\}$ in \mathbb{R} ?	(2)
(c)	i. Define a limit point of a subset A of a metric space X.	(2)
	ii. What are the limit points of the set $A = [0,1] \cup \{2\}$ in \mathbb{R} ?	(3)
(d)	Let A° denote the set of interior points of a subset A of a metric space X . Prove that A is open if and only if $A^{\circ} = A$.	(6)
QUE	STION B6 [20 Marks]	
Let	(X, d_X) and (Y, d_Y) be metric spaces and let $f : X \to Y$ be a function.	
(a)	Give the ε , δ definition for f to be continuous at $x_0 \in X$.	(3)
(b)	Give the ε , δ definition for f to be uniformly continuous.	(3)
(c)	Let $a \in X$, $Y = \mathbb{R}$ and $d_Y(x, y) = x - y $. Define $f : (X, d_X) \to (Y, d_Y)$ by $f(x) = d_X(x, a)$. Show that f is uniformly continuous over X .	(7)
(d)	Suppose <i>f</i> is continuous at x_0 . Prove that if $\{x_n\}$ is a sequence in <i>X</i> such that $x_n \to x_0$, then $f(x_n) \to f(x_0)$.	(7)
QUE	STION B7 [20 Marks]	
(a)	What does it mean to say that a metric space (X, d) is complete?	(3)
(b)	Give an example to show that the set \mathbb{Q} of rational numbers is not complete.	(5)
(c)	Let (X, d) be a metric space. What does it mean to say that $f : X \to X$ is a contraction mapping on X?	(3)
(d)	State (do not prove) the contraction mapping theorem.	(4)
(e)	Show that if $f : X \to X$ is a contraction mapping on a metric space (X, d) , then f is uniformly continuous over X .	(5)

__END OF EXAMINATION PAPER_____

•