UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION, 2016/2017

BASS IV, B.Ed (Sec.) IV, B.Sc. IV

Title of Paper : Metric Spaces

Course Number : M431

Time Allowed : Three (3) Hours

Instructions

- 1. This paper consists of SIX (6) questions in TWO sections.
- 2. Section A is **COMPULSORY** and is worth a total of 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1, A2, B3 B7) on a new page and clearly indicate the question number at the top of the page.
- 6. You can answer questions in any order.

Special Requirements: NONE

This examination paper should not be opened until permission has been given by the invigilator.

SECTION A: ANSWER ALL QUESTIONS

QUESTION A1 [20 Marks]

(a) i. Give a precise definition of a metric space. (3) ii. For $x = (x_1, x_2)$ and $y = (y_1, y_2)$ in \mathbb{R}^2 , define $d : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ by

$$d(x,y) = |x_1 - y_1| + |x_2 - y_2|$$

Show that *d* is a metric on \mathbb{R}^2 .

(b) Let (X, d) be a metric space. Give precise definitions of the following.

i. A closed ball $\overline{B}(x, r)$ in X.	(2)
ii. A closed subset U of X .	(2)
iii. The distance from a subset A to a subset B of X .	(2)
iv. The diameter of a subset A of X.	
v. A limit point of a subset A of X.	(2)
vi. The interior of a subset A of X.	(2)
vii. The boundary of a subset A of X.	(2)

QUESTION A2 [20 Marks]

(a) Prove: If $\{U_1, U_2, ..., U_n\}$ is any finite collection of open subsets of X, then $\bigcap_{i=1}^{n} U_i \text{ is open.}$ (4)

(b) For each metric on R² below, describe (or draw a picture of) the open ball B(a, 1), where a = (1,0). (No need to prove that d is indeed a metric.)
For x = (x₁, x₂), y = (y₁, y₂) in R²,

i.
$$d(x,y) = \begin{cases} 0 & \text{if } x = y, \\ 1 & \text{otherwise.} \end{cases}$$
 (4)

ii.
$$d(x,y) = |x_1 - y_1| + |x_2 - y_2|.$$
 (4)

iii.
$$d(x,y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}.$$
 (4)

iv.
$$d(x,y) = \max\{|x_1 - y_1|, |x_2 - y_2|\}.$$
 (4)

END OF SECTION A – TURN OVER

(5)

PAGE 1

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3 [20 Marks]

- (a) Define a Cauchy sequence in a metric space (X, d). (2)
- (b) Prove: Every convergent sequence {x_n} in a metric space (X, d) is a Cauchy sequence.
 (6)
- (c) Let (X, d) be a metric space and define a new metric d' on X by

$$d'(x,y) = \min\{1, d(x,y)\}.$$

Prove that $\{x_n\}$ is a Cauchy sequence in (X, d) if and only if it is a Cauchy sequence in (X, d'). (6)

(c) Prove that every Cauchy sequence $\{x_n\}$ in a metric space (X, d) is bounded.

(6)

(8)

QUESTION B4 [20 Marks]

(a) Let I = [a, b] and let C(I) be the set of all continuous functions on I. For $f, g \in C(I)$, define

$$d(f,g) = \max_{t \in I} |f(t) - g(t)|.$$

- i. Show that *d* is a metric on C(I).
- ii. Let I = [0, 1] and let $f(x) = x^2$ and g(x) = x. Find d(f, g). (4)
- (b) For $x, y \in \mathbb{R}$ define *d* by $d(x, y) = (x y)^2$. Show that *d* is not a metric on \mathbb{R} . (4)
- (c) Find all limit points of the set $A = [-1, 1] \cup \{3\}$ in \mathbb{R} . (4)

TURN OVER.

QUESTION B5 [20 Marks]

. •

(a) Define an open subset u of a metric space (X,u).	(2)
(b) Define the closure \overline{A} of a subset of a metric space (X, d) .	(2)
(c) Define a dense subset A of a metric space X .	(2)
(d) Prove that if x is a limit point of a subset A of a metric space (X, d) , then every open ball $B(x, r)$ contains an infinite number of elements of A.	(7)
(e) Let A° denote the set of interior points of a subset A of a metric space X . Prove that A is open if and only if $A^{\circ} = A$.	(7)
QUESTION B6 [20 Marks]	
Let (X, d_X) and (Y, d_Y) be metric spaces and let $f : X \to Y$ be a function.	
(a) Give the definition for f continuous at x_0 in terms of balls.	(3)
(b) Prove that f is continuous over X if and only if for any open subset G in Y , $f^{-1}(G)$ is open in X .	(10)
(c) Suppose f is continuous at x_0 . Prove that if $\{x_n\}$ is a sequence in X such that $x_n \to x_0$, then $f(x_n) \to f(x_0)$.	(7)
QUESTION B7 [20 Marks]	
(a) What does it mean to say that a metric space (X, d) is complete?	(3)
(b) Let (X, d) be a metric space. What does it mean to say that $f : X \to X$ is a contraction mapping on X?	(3)
(c) State (do not prove) the contraction mapping theorem.	(4)
(d) Prove: A subspace A of a complete metric space (X, d) is complete if and only if A is closed in A.	(10)

END OF EXAMINATION PAPER_____