University of Swaziland

Final Examination December, 2016

B.A.S.S I

Title of Paper : Elementary Quantitative Techniques I
Course Number : MAT101
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO sections.
a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.
b. SECTION B: 60 MARKS

Answer ANY THREE questions.
Submit solutions to ONLY THREE questions in Section B.
2. Show all your working.
3. Start each question on a fresh page.
4. Non programmable calculators may be used (unless otherwise stated).
5. A formula sheet is provided on the last page.
6. Special requirements: None.

This paper should not be opened until permission has been given by the invigilator.

SECTION A

Answer ALL questions from section A.
A1. (a) Simplify:
i. $\frac{3}{y+3}+\frac{2}{y+5}$,
ii. $5-\frac{x-1}{7 x}$,
[5]
iii. $\frac{x^{2}+2 x-3}{x^{2}+5 x-6}$.
[8]
(b) Consider the matrices $M=\left(\begin{array}{cc}3 & -2 \\ 2 & 4\end{array}\right)$ and $N=\left(\begin{array}{cc}4 & 6 \\ -1 & 5\end{array}\right)$. Find
i. $-3 M^{T}$,
ii. $N^{T}-M$.
(c) i. Use a calculator to compute $20 C_{5}$,
ii. Factorize completely $2 t^{2}-72$.
(d) i. Solve the simultaneous equations

$$
\begin{aligned}
& 3 x-2 y=5 \\
& 4 x+5 y=-24
\end{aligned}
$$

ii. Use the quadratic formula to solve $5 x^{2}=20 x-4$. (Give your answer correct to 1 d.p.)

SECTION B

Answer any THREE questions from section B.
B2. (a) Consider the AP

$$
5,2,-1,-4, \ldots,
$$

i. Write down the next two terms.
ii. Find a formula for the nth term.
iii. Use the formula in ii. to find the $81^{s t}$ term.
iv. Find the sum of the first 40 terms.
(b) Find the value of
i. $1+2+4+8+\cdots+16384$.
[5]
ii. $\sum_{n=1}^{40} 4 n$.
[4]

B3. (a) Consider the matrices

$$
A=\left(\begin{array}{cc}
-1 & 3 \\
4 & 2
\end{array}\right), B=\left(\begin{array}{cc}
5 & -1 \\
1 & 3 \\
5 & -4
\end{array}\right), C=\left(\begin{array}{ccc}
4 & 1 & 3 \\
-2 & -1 & 8
\end{array}\right)
$$

Find (where possible);
i. $|A|$,
ii. $A B^{T}$,
iii. $B C$.
(b) Use Cramer's rule to solve the following linear system of equations.

$$
\begin{align*}
4 x+3 y-2 z & =7 \\
x+y & =5 \\
3 x+z & =4 \tag{11}
\end{align*}
$$

B4. (a) Expand and simplify term by term $\left(x-\frac{3}{x^{2}}\right)^{5}$.
(b) Find the $11^{\text {th }}$ term in the binomial expansion of $\left(\frac{2}{x}+x\right)^{15} \cdot[6]$
(c) Simplify and leave your answers in terms of positive indices.

$$
\begin{aligned}
& \text { i. }\left(\frac{C^{-3}}{3}\right)^{2} \\
& \text { ii. } \frac{10 m^{4} n^{-3}}{m^{-1}} \times \frac{2 m^{2} n}{5 n}
\end{aligned}
$$

B5. (a) Consider the straight line, H given by $18 x+3 y=-10$.
i. State the y-intercept of H.
ii. State the gradient (slope) of H.
iii. Find the equation of a line parallel to H, passing through the point $(-2,1)$.
(b) Use synthetic division to work out $\frac{x^{3}-x^{2}-5 x+1}{x+2}$.
(c) Given that $x-2$ is a factor of $x^{3}+B x^{2}-5 x+4$, find the value of B.

B6. (a) Express as a single logarithm $\log _{3}(x+4)-\log _{3}(2 x)$.
(b) Express in terms of logarithms $3^{-4}=\frac{1}{81}$.
(c) Solve for x in each of the following.
i. $2^{x-5}=512$.
ii. $\log _{2} x+\log _{2}(x-2)=3$.
[3]
(d) The population of a city grows according to the formula

$$
p(t)=60000 e^{0.028 t}
$$

where t is the number of years from year 2000. Find
i. the population in 2012.
ii. the year when the population will reach 100000 .

Formula Sheet

Arithmetic Progressions:

$$
T_{n}=T_{1}+(n-1) d, \quad S_{n}=\frac{n}{2}\left[T_{1}+T_{n}\right], \quad S_{n}=\frac{n}{2}\left[2 T_{1}+(n-1) d\right] .
$$

Geometric Progressions:

$$
T_{n}=T_{1} r^{n-1}, \quad S_{n}=\frac{T_{1}\left(1-r^{n}\right)}{1-r} .
$$

Binomial Theorem:

$$
\begin{aligned}
& (a+b)^{n}=a^{n}+n C_{1} a^{n-1} b+n C_{2} a^{n-2} b^{2}+n C_{3} a^{n-3} b^{3}+\cdots+b^{n} . \\
& r \text { th term of }(a+b)^{n}=n C_{r-1} a^{n-r+1} b^{r-1} .
\end{aligned}
$$

Matrices:

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

logarithms and Exponential Functions:

$$
\begin{aligned}
& \log _{b} x=y \Leftrightarrow x=b^{y} . \\
& \log _{b}(A B)=\log _{b} A+\log _{b} B . \\
& \log _{b}\left(\frac{A}{B}\right)=\log _{b} A-\log _{b} B . \\
& \log _{b} A^{n}=n \log _{b} A .
\end{aligned}
$$

The Quadratic Formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

