UNIVERSITY OF SWAZILAND

FINAL EXAMINATION, MAY 2017

BA in Social Sciences I

Title of Paper	:	Elementary Quantitative	Techniques II
Course Number	:	MAT102	×

Time Allowed : Two (2) Hours

Instructions

- 1. This paper consists of SEVEN (7) questions in TWO sections.
- 2. Section A is **COMPULSORY** and is worth 50%. Answer ALL questions in this section.
- Section B consists of FOUR questions, each worth 25%. Answer ANY TWO
 (2) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1, B4 B7) on a new page and clearly indicate the question number at the top of the page.
- 6. You can answer questions in any order.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

7

Section A

Answer ALL Questions in this section

QUESTION A1

 ${\bf a}$. Evaluate

ι

- i. $\lim_{x \to 3} (2 + 4x^2 x^3)$ [2]
- ii. $\lim_{x \to -2} \left(\frac{3x}{5 3x} \right)$ [2] iii. $\lim_{x \to 4} \left(\frac{x^2 - 4x}{x - 4} \right)$ [3]

iv.
$$\lim_{x \to \infty} \left(\frac{x+7}{x^2 - 2} \right)$$
[4]

QUESTION A2

a. State the <i>limit definition</i> of the derivative of the function $f(x)$.	[2]
--	-----

b. Use the limit definition to find $\frac{df}{dx}$ given

$$f(x) = 5 - x^2$$

[7]

c. Find y' if		
i. $y = 4 - 2x + \frac{2}{7}x^7$		[2]
ii. $y = 3X^{\frac{2}{3}} + X^{-\frac{4}{3}}$		[3]
iii. $y = 1 - \frac{2}{x^2}$		[3]
iv. $y = e^{2-5x}$		[2]
v. $y = \ln(3x)$	· · · · · · · · · · · · · · · · · · ·	[3]

QUESTION A3

a. State the Fundamental Theorem of Calculus.

b. Integrate

i.
$$\int_{0}^{1} \left(3 + 4x - 15x^{2}\right) dx$$
 [5]

[3]

ii.
$$\int \left(7X^{\frac{1}{2}} + \frac{3}{X}\right) dX$$
 [3]
iii.
$$\int \left(\frac{5}{x^5} - \frac{3}{x^4}\right) dx$$
 [3]

$$\mathbf{iv.} \quad \int e^{\frac{1}{2}x} \, dx \tag{3}$$

Section B

Answer and 2 Questions in this section

QUESTION B4

a. Find the value of the limit of

$$\lim_{x \to -3} \frac{x+3}{x^2+4x+3}$$

[7]

b. Find the derivative

- i. y' for $y = (1 4x^2)^{14}$ [3]
- **ii.** y' for $y = (x+3)e^x$ [4]
- **iii.** y' for $y = \frac{3x-2}{7x+4}$ [6]
- **iv.** y''' for $y = 3\sqrt{x} + \frac{1}{r}$ [5]

QUESTION B5

a. Consider the function

$v = 2 + 27x - x^3$ i. Find the stationary point(s) and classify them as relative maxima or minima. [10]Find the *y*-intercept. [2]ii. iii. Make a neat sketch of the graph of y. [4]

b. The total costs C of a company (under certain conditions) are given by

$$C(x) = x^2 + \frac{16000}{x}$$

where x is the number of units produced per month. Find the number of units that minimises the monthly average costs. Hence find the minimum cost. [9]

QUESTION B6

a. By first making the substitution $u = x^2 + 1$, evaluate the integral

$$\int 6x \left(x^2 + 1\right)^5 dx.$$

b. Use the method of partial fractions to integrate

$$\int \frac{5x-6}{(x-1)(x-2)} \, dx.$$
[15]

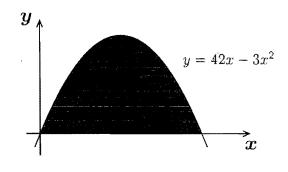
QUESTION B7

Use the method of tabular integration to evaluate a.

$$\int 20x^2 e^x \, dx.$$

[12]

b. i. Evaluate


3

$$\int_0^1 \frac{2t^4 - 3t^3 + 5}{t^3} \, dt.$$

[7]

[6]

ii. Find the area of the shaded region in the figure below

[10]