## University of Swaziland

## Final Examination, December 2016

## B.A.S.S. I , B.Comm I, D.Comm I (IDE), B. Ed

Title of Paper : Algebra, Trigonometry and Analytic Geometry
Course Code : MAT107/MAT121/MS101
Time Allowed : Three (3) Hours

## Instructions

1. This paper consists of TWO sections.
a. SECTION A(COMPULSORY): 40 MARKS

Answer ALL QUESTIONS.
b. SECTION B: 60 MARKS

Answer ANY THREE questions.
Submit solutions to ONLY THREE questions in Section B.
2. Each question in Section B is worth $20 \%$.
3. Show all your working.
4. Special requirements: None

This paper should not be opened until permission has been given by the invigilator.

## QUESTION 1

a. State the remainder theorem.
b. By using the remainder theorem which of the following values

$$
\begin{equation*}
\text { i. } x=\frac{1}{3} \text {, } \tag{1}
\end{equation*}
$$

ii. $x=2$,
are roots of the polynomial

$$
P(x)=-3 x^{4}+10 x^{3}+2 x-1
$$

c. Using the long division method find the quotient and remainder when

$$
\begin{equation*}
P(x)=x^{4}-3 x^{3}-4 x+2 \tag{3}
\end{equation*}
$$

is divided by $D(x)=x^{2}+3$.
d. Solve
i. $\quad x^{\frac{4}{3}}=16$.
ii. $\quad \log (x+1)-\log (2 x-1)=\log 4+\log \frac{1}{6}$.
iii. $\quad 4^{x-2}=3^{2 x+1}$.
iv. $\quad x-\sqrt[3]{-\frac{1}{27}}=0$
e. Expand $(x+2 y)^{4}$ using the binomial theorem.
f. Without using a calculator, find the exact value of $\sin 1305^{\circ}$.
g. Find the equation of a straight line passing through $(-1,2)$ and having $y$ - intercept of 4 units.
h. Calculate $A B^{T}+A$ if the matrices $A$ and $B$ are given by

$$
A=\left[\begin{array}{ccc}
2 & 1 & 2 \\
3 & -4 & 4
\end{array}\right] \text { and } \quad B=\left[\begin{array}{ccc}
0 & 2 & -3 \\
-6 & 5 & 1 \\
2 & 1 & 0
\end{array}\right]
$$

[4]
i. A new car costs E 9000 . Assume that it depreciates $21 \%$ the first year, $18 \%$ the second year, $15 \%$ the third year, and continues in the same manner for 5 years. If all depreciations apply to the original cost, what is the value of the car in 5 years?
[4]
j. If $\cos \theta=-\frac{\sqrt{3}}{2}$; find the value of $\sin \theta$ and $\tan \theta$ when $\theta$ lies in the third quadrant.
[4]
k. Given the complex number $Z_{1}=1+2 i, Z_{2}=1-i$ and $Z_{3}=3-4 i$, express $\frac{\overline{Z_{1}} Z_{2}}{Z_{3}}$ in the form $a+i b$.

## SECTION B: ANSWER ANY 3 QUESTIONS

## QUESTION 2

Given the following polynomial

$$
P(x)=3 x^{4}+5 x^{3}-10 x^{2}-20 x-8=0
$$

a. List all the possible roots of $P(x)$.
b. Find the number of positive real zeros (roots) of $P(x)$.
c. Find the number of negative real zeros (roots) of $P(x)$.
d. Use the remainder theorem and synthetic division (ONLY) to find the roots of $P(x)$.

## QUESTION 3

a. Prove the following trigonometric identity $(\sin \theta+\cos \theta)(\tan \theta+\cot \theta)=$ $\sec \theta+\csc \theta$.
b. Solve the following equations
i. $2 \cos ^{2} x=1-\sin x, \quad 0^{\circ} \leq x \leq 360^{\circ}$.
ii. $z^{2}+2 i z-4=0$.

QUESTION 4
a. Use Cramer's rule to solve the following system of equations

$$
\begin{array}{r}
x+2 y+z=1 \\
x-y-z=0 \\
2 x+y+z=3
\end{array}
$$

b. Find the first three terms of an arithmetic progress whose $9^{\text {th }}$ term is 16 and $40^{\text {th }}$ term is 47 .
c. Convert $3.38181818 \cdots$ into and equivalent fraction.

## QUESTION 5

a. Given the following expression

$$
\left(x^{2}-\frac{1}{2 x}\right)^{15}
$$

Find
i. eight term
ii. constant term
iii. term involving $x^{6}$.
b. Find the equation of a straight line passing through the intersection of $3 x-y=9$ and $x+2 y=-4$, parallel to $3=4 y+8 x$.

## QUESTION 6

a. Find the center and radius of a circle defined by the equation

$$
6 x^{2}+12 x-4+6 y^{2}-18 y=0 .
$$

b. Give the binomial expansion for $\sqrt[4]{1-3 x}$ up to and including $x^{3}$ (where x is small). Use this expansion to find $\sqrt[4]{0.97}$.
c. Prove by mathematical induction that the formula

$$
3+3^{2}+3^{3}+\cdots+3^{n}=\frac{3\left(3^{n}-1\right)}{2}
$$

is valid for all positive integers.

## END OF EXAMINATION

