University of Swaziland

Final Examination – December 2016

BSc I, BEng I, BEd I

Title of Paper: Algebra, Trigonometry & Analytic GeometryCourse Number: MAT111Time Allowed: Three (3) hours

Instructions:

1. This paper consists of 2 sections.

2. Answer ALL questions in Section A.

3. Answer ANY 3 (out of 5) questions in Section B.

4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

A.1	a. On the same axes, make a sketch of the graphs of	
	i. $y = e^{-x}$	[2 marks]
	ii. $y = \ln x$	[2 marks]
	iii. $x = -y^2$	[2 marks]
	b. Evaluate and leave your answer in the form $a + ib$.	
	i. $(4-3i^7)(3+4i^9)$	[4 marks]
	ii. $\cos(\frac{\pi}{6}) + i\sin(\frac{\pi}{6}) + e^{-i\pi/6}$	[3 marks]
	c. Given the vectors $A = 9\hat{i} - 12\hat{k}$ and $B = -8\hat{i} + 20\hat{j} + 3\hat{k}$, find	
,	i. A	[2 marks]
	ii. A B	[3 marks]
	d. Find the value of	
	i. $\sum_{n=-10}^{60} (7-5n)$	[3 marks]
	ii. $\sum_{n=0}^{\infty} \left(\frac{10}{9}\right)^n$ (correct to 2 d.p.)	[3 marks]
	e. Simplify	
	$2\log_2\left(2x^2 ight) - \log_2\sqrt{8x^8}.$	[3 marks]
	f. Evaluate and simplify	
	$\sin heta = e^{- heta} - \cos heta$	
	$\begin{vmatrix} \cos \theta & \ln \theta & -\sin \theta \end{vmatrix}$.	[4 marks]
		• • • •
	g.	
	1. State the <i>Remainder Theorem</i> .	[2 marks]
•	11. Find the quotient and remainder of	
	$\frac{x^4-1}{x^2+1}.$	[4 marks]
	h. Find the 17th term of the binomial expansion of	
	$(2,2)$ (\overline{z}) (20)	
	$\left(rac{2x^2}{\sqrt{y}}+rac{\sqrt{y}}{x} ight)$.	[3 marks]

Section A Answer ALL Questions in this section

B.1 a. Use de Moivre's theorem to expand

$$\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)^{100}$$

and express in the form $x + iy$.	[4 marks]
b. Solve and express your answer in the form $z = x + iy$.	

i. $2iz + 4 = 3 - 4\overline{z}$ ii. $z^4 + 8z^2 - 9 = 0$ [4 marks]

c. Given the complex number z = x + iy, prove that

$$\overline{(z_1 \cdot z_2)} = \overline{z}_1 \cdot \overline{z}_2.$$
 [6 marks]

B.2 a. A curve is defined by the parametric equations

$$x = \sin \theta + \cos \theta$$
$$y = \sin \theta - \cos \theta.$$

i. By eliminating θ , derive the equation of the curve in terms of x and y only. [5 marks]

- ii. State the name of the curve and make a sketch of it. [3 marks]
- b. Consider the trigonometric identity

 $1 + \cos 2\theta + \cos 4\theta + \cos 6\theta = 4\cos \theta \cos 2\theta \cos 3\theta.$

i. Prove the identity. [6 marks]

ii. Hence, or otherwise, find all values of θ (in radians) satisfying

$$1 + \cos 2\theta + \cos 4\theta + \cos 6\theta = 0$$

in the interval $0 \leq \theta \leq \pi$.

[6 marks]

[6 marks]

B.3 a. Solve for x given

 $\log_2 x + \log_2(8x + 15) = 1.$ [4 marks]

b. Consider the number sequence

$$\ln x$$
, $\ln (xr^2)$, $\ln (xr^4)$, $\ln (xr^6)$, \cdots ,

where x > 0 and r are real numbers.

- i. Show that the sequence is an *arithmetic progression* and hence find the value of the *common difference*. [3 marks]
- ii. Find the formula for the *n*-th term T_n (expressing your answer as a single logarithm with coefficient 1) [3 marks]
- iii. Find the formula for the sum of the first n terms S_n (expressing your answer as a single logarithm with coefficient 1) [4 marks]

iv. Given that $T_5 = \ln 1280$ while $S_3 = \ln 8000$, find the values of x and r. [6 marks]

B.4 a. Consider the polynomial

$$P(x) = Ax^3 + Bx^2 - 5x + 2,$$

where A and B are constants. You are given that x + 1 is a factor of P(x) while dividing P(x) by x + 2 leaves a remainder of -36.

i. Find the values of *A* and *B*.

[8 marks] [4 marks]

- ii. Hence, factorise P(x)
- b. Use mathematical induction to prove the formula

$$\sum_{i=1}^{n} i \cdot 2^{i-1} = 1 + (n-1)2^{n}, \quad n \in \mathbb{Z}^{+}.$$
 [8 marks]

31

B.5 a. Use Cramer's rule to solve

b. Find the first 3 terms of the binomial expansion of

$$\left(\frac{1}{x^2} - 2x^2\right)^{-\frac{1}{2}}.$$
 [6 marks]

) -