University of Swaziland

Final Examination - December 2016

BSc I, BEng I, BEd I

Title of Paper : Algebra, Trigonometry \& Analytic Geometry
Course Number : MAT111
Time Allowed : Three (3) hours

Instructions:

1. This paper consists of 2 sections.
2. Answer ALL questions in Section A.
3. Answer ANY 3 (out of 5) questions in Section B.
4. Show all your working.

This Paper should not be opened until permission has been given BY THE INVIGILATOR.

Section A

Answer ALL Questions in this section

A. 1 a. On the same axes, make a sketch of the graphs of
i. $y=e^{-x}$
ii. $y=\ln x$ [2 marks]
iii. $x=-y^{2}$ [2 marks]
b. Evaluate and leave your answer in the form $a+i b$.
i. $\quad\left(4-3 i^{7}\right)\left(3+4 i^{9}\right)$
[4 marks]
ii. $\quad \cos \left(\frac{\pi}{6}\right)+i \sin \left(\frac{\pi}{6}\right)+e^{-i \pi / 6}$
[3 marks]
c. Given the vectors $\boldsymbol{A}=9 \hat{\boldsymbol{i}}-12 \hat{\boldsymbol{k}}$ and $\boldsymbol{B}=-8 \hat{\boldsymbol{i}}+20 \hat{\boldsymbol{j}}+3 \hat{\boldsymbol{k}}$, find
i. $|A|$
[2 marks]
ii. $\boldsymbol{A} \cdot \boldsymbol{B}$ [3 marks]
d. Find the value of
i. $\sum_{n=-10}^{60}(7-5 n)$
[3 marks]
ii. $\sum_{n=0}^{\infty}\left(\frac{10}{9}\right)^{n}$ (correct to 2 d.p.)
[3 marks]
e. Simplify

$$
2 \log _{2}\left(2 x^{2}\right)-\log _{2} \sqrt{8 x^{8}} .
$$

f. Evaluate and simplify

$$
\left|\begin{array}{ccr}
\sin \theta & e^{-\theta} & \cos \theta \\
\cos \theta & \ln \theta & -\sin \theta \\
0 & 1 & 0
\end{array}\right| .
$$

g.
i. State the Remainder Theorem.
ii. Find the quotient and remainder of

$$
\frac{x^{4}-1}{x^{2}+1} .
$$

h. Find the 17 th term of the binomial expansion of

$$
\left(\frac{2 x^{2}}{\sqrt{y}}+\frac{\sqrt{y}}{x}\right)^{20}
$$

Section B
 Answer ANY 3 Questions in this section

B. 1 a. Use de Moivre's theorem to expand

$$
\left(\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)^{100}
$$

and express in the form $x+i y$.
[4 marks]
b. Solve and express your answer in the form $z=x+i y$.
i. $2 i z+4=3-4 \bar{z}$ [6 marks]
ii. $z^{4}+8 z^{2}-9=0$ [4 marks]
c. Given the complex number $z=x+i y$, prove that

$$
\overline{\left(z_{1} \cdot z_{2}\right)}=\bar{z}_{1} \cdot \bar{z}_{2} .
$$

[6 marks]
B. 2 a. A curve is defined by the parametric equations

$$
\begin{aligned}
& x=\sin \theta+\cos \theta \\
& y=\sin \theta-\cos \theta
\end{aligned}
$$

i. By eliminating θ, derive the equation of the curve in terms of x and y only.
ii. State the name of the curve and make a sketch of it. [3 marks]
b. Consider the trigonometric identity

$$
1+\cos 2 \theta+\cos 4 \theta+\cos 6 \theta=4 \cos \theta \cos 2 \theta \cos 3 \theta
$$

i. Prove the identity.
ii. Hence, or otherwise, find all values of θ (in radians) satisfying

$$
1+\cos 2 \theta+\cos 4 \theta+\cos 6 \theta=0
$$

in the interval $0 \leqslant \theta \leqslant \pi$.
B. 3 a. Solve for x given

$$
\log _{2} x+\log _{2}(8 x+15)=1
$$

b. Consider the number sequence

$$
\ln x, \ln \left(x r^{2}\right), \ln \left(x r^{4}\right), \ln \left(x r^{6}\right), \cdots
$$

where $x>0$ and r are real numbers.
i. Show that the sequence is an arithmetic progression and hence find the value of the common difference.
ii. Find the formula for the n-th term T_{n} (expressing your answer as a single logarithm with coefficient 1)
iii. Find the formula for the sum od the first n terms S_{n} (expressing your answer as a single logarithm with coefficient 1)
iv. Given that $T_{5}=\ln 1280$ while $S_{3}=\ln 8000$, find the values of x and r.
B. 4 a. Consider the polynomial

$$
P(x)=A x^{3}+B x^{2}-5 x+2
$$

where A and B are constants. You are given that $x+1$ is a factor of $P(x)$ while dividing $P(x)$ by $x+2$ leaves a remainder of -36 .
i. Find the values of A and B.
ii. Hence, factorise $P(x)$
b. Use mathematical induction to prove the formula

$$
\sum_{i=1}^{n} i \cdot 2^{i-1}=1+(n-1) 2^{n}, \quad n \in \mathbb{Z}^{+}
$$

B. 5 a. Use Cramer's rule to solve

$$
\begin{aligned}
x-2 y+z & =0 \\
2 x+y & =-1 \\
3 x+5 y-4 z & =-23
\end{aligned}
$$

[14 marks]
b. Find the first 3 terms of the binomial expansion of

$$
\left(\frac{1}{x^{2}}-2 x^{2}\right)^{-\frac{1}{2}}
$$

