University of Swaziland

Final Examination, December 2016

B.A.S.S. , B.Sc, B.Eng, B.Ed

Title of Paper : Calculus I
Course Number : M211 / MAT211
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO sections.
a). SECTION A(COMPULSORY): 40 MARKS

Answer ALL QUESTIONS.
b). SECTION B: 60 MARKS

Answer ANY THREE questions.
Submit solutions to ONLY THREE questions in Section B.
2. Each question in Section B is worth 20%.
3. Show all your working.
4. Non programmable calculators may be used (unless otherwise stated).
5. Special requirements: None.

This paper should not be opened until permission has been given BY THE INVIGILATOR.

SECTION A: ANSWER ALL QUESTIONS

Question 1

(a) Suppose that $f^{\prime}(x)=0$ for all $x \in(a, b)$. Prove that $f(x)$ is constant on (a, b).
(b) Determine the exact length of

$$
\begin{equation*}
x=\frac{2}{3}(y-1)^{\frac{3}{2}}, \quad 1 \leq y \leq 4 \tag{5}
\end{equation*}
$$

(c) State the First Derivative Test for determining local maximum and local minimum.
(d) Determine the volume of the solid obtained by rotating the region bounded by

$$
\begin{equation*}
y=x^{2}-4 x+5 \tag{6}
\end{equation*}
$$

$x=1, x=4$ and the x-axis about the x-axis.
(e) Find the absolute maximum and absolute minimum values of

$$
\begin{equation*}
f(x)=12+4 x-x^{2}, \quad \text { in } \quad[0,5] . \tag{4}
\end{equation*}
$$

(f) Determine if the sequence

$$
\begin{equation*}
\left\{\frac{e^{3 n}}{n^{2}+1}\right\}_{n=1}^{\infty} \tag{4}
\end{equation*}
$$

converges or diverges. If it converges, find the limit.
(g) Find the average value of $f(x)=\sin (2 x)$ over the closed interval $[0, \pi / 2]$.
(h) Consider the series

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{4 n^{2}-n^{3}}{10+2 n^{3}} . \tag{4}
\end{equation*}
$$

Determine if the following series is convergent or divergent.
(i) Find the Maclaurin series of $f(x)=x^{2} e^{3 x}$.

SECTION B: ANSWER ANY 3 QUESTIONS

Question 2

(a) Suppose that $\phi(x)$ and $\gamma(x)$ are continuous on $[a, b]$ and differentiable on (a, b). Suppose also that $\phi(a)=\gamma(a)$ and $\phi^{\prime}(x)<\gamma^{\prime}(x)$ for $a<x<b$. Prove that $\phi(b)<\gamma(b)$.
(b) Consider the function $f(x)=3 x^{5}-5 x^{3}+3$.
(i) Find the intervals of increase or decrease.
(ii) Find the intervals where the function is concave up and concave down.

Question 3

(a) Use the method of slicing to find the volume of the solid obtained by rotating the region bounded by

$$
y=x^{3}, \quad y=x, \quad x \geq 0
$$

about the x-axis. Sketch the region, the solid and a typical disk or washer.
(b) Use the method of cylindrical shells to find the volume generated by rotating the region bounded by

$$
y=4 x-x^{2}, \quad y=3
$$

about $x=1$.
(c) Find the horizontal asymptotes of the curve $y=x^{\frac{1}{x}}$.
(a) The velocity v of blood that flows in a blood vessel with radius R and length l at a distance r from the central axis is

$$
v(r)=\frac{P}{4 \eta l}\left(R^{2}-r^{2}\right)
$$

where P is the pressure difference between the ends of the vessel and η is the viscosity of the blood. Find the average velocity over the interval $0 \leq r \leq R$.
(b) Find the arc length of the function

$$
y=\ln (\sec (x)), \quad 0 \leq x \leq \frac{\pi}{4}
$$

[6]
(c) Determine the surface area of the solid obtained by rotating,

$$
y=\sqrt{9-x^{2}}, \quad-2 \leq x \leq 2
$$

about the x-axis.

Question 5

(a) Determine the area of the region bounded by

$$
y=2 x^{2}+10, \quad y=4 x+16
$$

[6]

(b) Find the Taylor Series for

$$
\begin{equation*}
f(x)=\sin (x), \tag{8}
\end{equation*}
$$

about $x=0$.
(c) Use Maclaurin series to evaluate

$$
\int x^{2} \sin \left(x^{4}\right) d x
$$

as an infinite series.

Question 6

(a) Determine if the sequence

$$
\left\{\frac{4 n^{3}+1}{10 n-8 n^{3}}\right\}_{n=2}^{\infty}
$$

converges or diverges.
(b) Consider the series

$$
\sum_{n=1}^{\infty} 4^{2-n} 2^{n+1}
$$

(i) Express the series in the form $\sum_{n=1}^{\infty} a r^{n-1}$ and determine the values of a and r.
(ii) Determine if the series converges or diverges. If it is convergent, determine the value of the series.
(c) Consider the power series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} n(x+3)^{n}}{4^{n}}
$$

Determine the radius of convergence and interval of convergence of the power series.

