University of Swaziland 53

Supplementary Examination, July 2017

B.A.S.S., B.Sc, B.Eng, B.Ed

Title of Paper : Calculus I

Course Number : M211/MAT211
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO sections.
a). SECTION A(COMPULSORY): 40 MARKS

Answer ALL QUESTIONS.
b). SECTION B: 60 MARKS

Answer ANY THREE questions.
Submit solutions to ONLY THREE questions in Section B.
2. Each question in Section B is worth 20%.
3. Show all your working.
4. Non programmable calculators may be used (unless otherwise stated).
5. Special requirements: None.
'This paper should not be opened until permission has been given BY THE INVIGILATOR.

SECTION A: ANSWER ALL QUESTIONS 54

Question 1

(a) Expand $f(x)=x^{2} e^{3 x}$ as a Taylor series about $x=0$.
(b) Determine the exact length of

$$
y=\frac{2}{3}(x+4)^{\frac{3}{2}}, \quad 1 \leq x \leq 4 .
$$

(c) Consider the function

$$
f(x)=(x+1)^{5}-5 x-2 .
$$

Find the local maximum and minimum values.
(d) Determine the area of the region bounded by

$$
y=2 x^{2}+10, \quad y=4 x+16
$$

(e) Find the absolute maximum and absolute minimum values of

$$
f(x)=12+4 x-x^{2}, \quad \text { in } \quad[0,5] .
$$

(f) Consider the sequence

$$
\left\{\frac{e^{2 n}}{n^{2}-1}\right\}_{n=2}^{\infty}
$$

(i) Write down the first three terms of the sequence.
(ii) Determine if the sequence converges or diverges. If it converges, find the limit.
(g) Find the average value of $f(x)=e^{x}$ over $[0, \pi]$.
(h) Consider the series

$$
\sum_{n=0}^{\infty} \frac{4 n^{3}-n^{2}}{10+2 n^{3}} .
$$

Determine if the following series is convergent or divergent.
(i) Suppose that $\rho(x)$ is an even function that is differentiable everywhere. Prove that for every positive number κ, there exist a number α in $(-\kappa, \kappa)$ such that $\rho^{\prime}(\alpha)=0$.

SECTION B: ANSWER ANY 3 QUESTIONS :

Question 2

(a) If $f(x)$ is continuous on a closed interval $[a, b]$, show that $f(x)$ attains both an absolute maximum value β and an absolute minimum value α in $[a, b]$. That is, show that there are two numbers x_{1} and x_{2} in $[a, b]$ with $f\left(x_{1}\right)=\alpha$ and $f\left(x_{2}\right)=\beta$ and $\alpha \leq f(x) \leq \beta$ for every other $x \in[a, b]$.
(b) Consider the function $f(x)=3 x^{5}-5 x^{3}+3$.
(i) Find the intervals of increase or decrease.
(ii) Find the intervals where the function is concave up and concave down.

Question 3

(a) Determine the volume of the solid obtained by rotating the region bounded by

$$
\begin{equation*}
y=(x-1)(x-3)^{2} \tag{7}
\end{equation*}
$$

and the x-axis about the y-axis.
(b) Determine the volume of the solid obtained by rotating the region bounded by

$$
y=2 \sqrt{x-1}, \quad \text { and } \quad y=x-1
$$

about the line $x=-1$.
(c) Find the horizontal asymptotes of the curve $y=\frac{\ln (x)}{x}$.

Question 4

(a) In a certain city, the Temperature (in $^{\circ} \mathrm{F}$) t hours after 9 am was modeled by the function

$$
T(t)=50+14 \sin \left(\frac{\pi t}{12}\right)
$$

Find the average temperature during the period from 9:00 am to 9:00 pm.
(b) Set up the integral that could be used to find the arc length of the function

$$
x=\frac{y^{2}}{2}, \quad 0 \leq x \leq \frac{1}{2}
$$

(c) Determine the surface area of the solid obtained by rotating,

$$
y=\sqrt{9-x^{2}}, \quad-2 \leq x \leq 2
$$

about the x-axis.

Question 5

(a) Determine the area of the region bounded by

$$
y=x e^{-x^{2}}, \quad y=x+1, \quad x=0, \quad x=2
$$

[6]

(b) Find the Taylor Series for

$$
\begin{equation*}
f(x)=e^{x} \tag{8}
\end{equation*}
$$

about $x=0$.
(c) Use Maclaurin series to evaluate

$$
\int t^{3} e^{t^{2}} d t
$$

as an infinite series.

Question 6

(a) Determine if the sequence

$$
\left\{\frac{n^{3}+1}{5 n-7 n^{3}}\right\}_{n=2}^{\infty}
$$

converges or diverges.
(b) (i) Determine if the series $\sum_{n=0}^{\infty} n e^{-n^{2}}$ converges or diverges.
(ii) Determine if the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ converges or diverges.
(c) Consider the power series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} n(x+4)^{n}}{6^{n}}
$$

Determine the radius of convergence and interval of convergence of the power series.

