University of Swaziland

Final Examination, 2016/2017

B.Sc. II

Title of Paper : Mathematics for Scientists
Course Number : MAT215/M215
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three quontmered in Section B will be marked.

2. Show all your working.

Special Requirements: None

This examination paper should not be opened until permission has been given by the invigilator.

A1. (a) Use a scalar product to find a unit vector perpendicular to both $\bar{a}=(2,3,-1)$ and $\bar{b}=(3,-2,1)$.
A2. State Rolle's Theorem.
A3. Compute $\lim _{x \rightarrow 0^{+}} \frac{\sin x}{\sqrt{x}}$.
A4. State Taylor's Series Theorem.
A5. If $f(x, y)=x \exp \left(2 x^{2}+y^{2}\right)$, find f_{x} and f_{y}.
A6. State the equality of Mixed Derivatives Theorem.
A7. For the function $f(x, y, z)=x y+y z-x z+x$, find
(a) Gradient,
(b) stationary points.

A8. Minimize $f(x, y)=x^{2}+y^{2}$, subject to constraint $2 x+y=2$.
A9. Compute the volume under the graph of $z=2 x+y$ over the region $2<x<4$, $1<y<6$.
A10. Use polar coordinates to compute $\iint_{D} \sqrt{x^{2}+y^{2}} \quad d x d y$ if D is region in the first quadrant bounded by the unit circle and the coordinate axes..
A11. Define an ODE with homogeneous coefficients.

SECTION B: Answer Any THREE Questions

QUESTION B1 [20 Marks]

B1. (a) Does point $R(1,3)$ lie on the line through $P(-1,-2)$ and $Q\left(\frac{1}{2}, \frac{7}{4}\right)$?
(b) Use the vector product to find a vector perpendicular to $\bar{a}=(1,0,0)$ and $\bar{b}=$ ($1,0, \sqrt{3}$).
(c) Find the volume of parallelepiped spanned by the directed segments $\overline{O A}, \overline{O B}$ and
$\overline{O C}$ if the coordinates of A, B and C are $(8,4,0),(2,6,0)$ and $(0,4,6)$ respectively.
(d) If $f(x)=\frac{4}{x}$, find (if possible) all numbers in the interval $(1,4)$ for which the Mean Value Theorem is satisfied. Explain.

B2. (a) Evaluate (i) $\lim _{x \rightarrow+\infty} \frac{\ln x}{x}$,
(ii) $\lim _{x \rightarrow+\infty} \frac{x \ln x}{(x+1)^{2}}$
(b) (i) Use the quadratic approximation formula to compute e^{x} for small $|x|$, and estimate the error.
(ii) In particular compute $e^{-0.1}$.
(c) Find the third Taylor's polynomial at $x_{o}=\frac{\pi}{6}$ for $f(x)=\sin x$.

QUESTION B3 [20 Marks]

B3. (a) Use the chain rule to evaluate f_{u} and f_{v} if $f(x, y)=3 x^{2} y$ and
$x=u+v, \quad y=u v$.
(b) Verify equality of Mixed Derivatives Theorem for $f(x, y)=\sqrt{2 x-y}$.
(c) If $f(x, y)=\ln \left(\frac{x+1}{y+1}\right)$, what is $d f$?
(d) Find and classify all stationary points of $f(x, y)=x^{4}+y^{4}+4 x-4 y$.

QUESTION B4 [20 Marks]

B4. (a) A fanmer who wants to fence a rectangular grazing field bordering a straight river has 600 m of fencing material. If the side along the stream will not be fenced, what length and width will provide the maximum grazing area? Apply Lagrange method.
(b) Let R be the triangular region bounded by the lines $2 y=x, y=2 x$ and $x=\pi$. compute $\iint_{R} \sin y d x d y$.
(c) Compute $\iiint_{\Delta} \frac{x+y}{z} d x d y d z$, where
$\Delta=\{(x, y, z): \quad-1<x<1, \quad-2<y<2, \quad 1<z<2\}$

QUESTION B5 [20 Marks]

B5. (a) Solve $y^{\prime}=\frac{2 y}{x}$ for $x>0, y>0$.
(b) Prove that if $f(x, y)$ is homogeneous of degree zero, then $f(x, y)$ is function of $\frac{y}{x}$ alone.
(c) Test $t d t+x d x=0$ for exactness and solve it.
(d) Solve $y^{\prime \prime}-6 y^{\prime}+9 y=0, \quad y(0)=0, \quad y^{\prime}(0)=1$.

