University of Swaziland

6 -

Final Examination, May 2017

B.Sc II, B.A.S.S II, B.Ed II, B.Eng II

Title of Paper	: Ordinary Differential Equations
Course Code	: MAT216
Time Allowed	: Three (3) Hours

Instructions

1. This paper consists of TWO sections.

- a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.
- b. SECTION B: 60 MARKS

Answer ANY THREE questions. Submit solutions to ONLY THREE questions in Section B.

- 2. Each question in Section B is worth 20%.
- 3. Show all your working.
- 4. Non programmable calculators may be used (unless otherwise stated).
- 5. Special requirements: None.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A: ANSWER ALL QUESTIONS

Question 1

- (a) (i) By eliminating the constant, find the differential equation satisfied by the equation y = c₁e^{-2x} + c₂e^{2x}. [5]
 (ii) Solve (1+y²)dx + (1+x²)dy = 0.
 - (iii) Solve

(iv) Solve

$$(x+2y)dx + (2x+y)dy = 0.$$

(3y - 7x + 7)dx + (7y - 3x + 3)dy = 0.

[5]

[5]

(7.

- [5]
- (b) Determine the value of a for which the following differential equation is exact: Hence, solve the differential equation.

$$xy^3dx + ax^2y^2dy = 0.$$

(c) Solve the Bernoulli equation

 $3y' + xy = xy^{-2}.$

[5]

[5]

[5]

(d) Solve

$$\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} - \frac{dy}{dx} - y = 0.$$

(e) Using Laplace transform method solve

$$y'' - 2y' - 8y = 0$$
, $y(0) = 3$, $y'(0) = 6$.

[5]

SECTION B: ANSWER ANY 3 QUESTIONS

Question 2

(a) Use the method of variation of parameters to solve

$$y'' + 3y' + 2y = 2e^x.$$

(b) Solve the system of equations

$\frac{dx}{dt} - 7x + y = 0$ $\frac{dy}{dt} - 2x - 5y = 0.$

Question 3

Find the series solution, about x = 0, of the equation

$$xy'' + y' - xy = 0,$$

by the Frobenious method.

Question 4

(a) Use the method of undetermined coefficients to find the solution of

$$y'' + 9y = \cos 3x$$

(b) Using Laplace transform method, solve

$$y'' + 2y' + 5y = e^{-t}\sin t$$
, $y(0) = 0$, $y'(0) = 1$

[10]

[10]

[10]

68

[10]

[20]

(a) Solve

$$(x+1)\frac{dy}{dx} - y = e^{3x}(x+1)^2.$$
[10]

(b) It is given that $y_1 = x$ and $y_2 = \frac{1}{x}$ are two linearly independent solutions of the associated homogeneous equation of

Question 5

$$x^2y'' + xy' - y = x, \quad x \neq 0.$$

Find a particular solution and the general solution of the equation. [10]

Question 6

(a) Solve

$$x^{2}y'' - 3xy' + 3y = 0$$
, $y(1) = 0$, $y'(1) = -2$.

(b) Find the general solution of the differential equation

$$y' = y^2 + (2x - 1)y + x^2 - x + 1$$

if y = x is a solution of the differential equation.

[10]

[10]

69

Table 1: Table of Laplace Transforms	
f(t)	$F(s) = \mathcal{L}[f(t)]$
t ⁿ	$\frac{n!}{s^{n+1}}$
$\frac{1}{\sqrt{t}}$	$\sqrt{\frac{\pi}{s}}$
e^{at}	$\frac{1}{s-a}$
$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$
$\frac{1}{a-b} \left(e^{at} - e^{bt} \right)$	$\frac{1}{(s-a)(s-b)}$
$\frac{1}{a-b} \Big(a e^{at} - b e^{bt} \Big)$	$\frac{s}{(s-a)(s-b)}$
$\sin(at)$	$rac{a}{s^2+a^2}$
$\cos(at)$	$\frac{s}{s^2+a^2}$
$\sin(at) - at\cos(at)$	$\frac{2a^3}{(s^2+a^2)^2}$
$e^{at}\sin(bt)$	$\frac{b}{(s-a)^2+b^2}$
$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}$
$\sinh(at)$	$\frac{a}{s^2-a^2}$
$\cosh(at)$	$\frac{s}{s^2-a^2}$
$\sin(at)\sinh(at)$	$\frac{2a^2}{s^4 + 4a^4}$
$rac{d^nf}{dt^n}(t)$	$\begin{vmatrix} s^{n}F(s) - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - f^{(n-1)}(0) \\ 5 \end{vmatrix}$
$g(t) = \begin{cases} 0, & 0 \le t \le a; \\ f(t-a), & a < t. \end{cases}$	$e^{-as}F(s)$