University of Swaziland

Final Examination, May 2017

B.Sc II, B.A.S.S II, B.Ed II, B.Eng II

Title of Paper : Ordinary Differential Equations

Course Code : MAT216

Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO sections.
a. SECTION A(COMPULSORY): 40 MARKS

Answer ALL QUESTIONS.
b. SECTION B: 60 MARKS

Answer ANY THREE questions.
Submit solutions to ONLY THREE questions in Section B.
2. Each question in Section B is worth 20%.
3. Show all your working.
4. Non programmable calculators may be used (unless otherwise stated).
5. Special requirements: None.

This paper should not be opened untl permission has been given by the inVIGILATOR.

Question 1

(a) (i) By eliminating the constant, find the differential equation satisfied by the equation $y=c_{1} e^{-2 x}+c_{2} e^{2 x}$.
(ii) Solve

$$
\begin{equation*}
\left(1+y^{2}\right) d x+\left(1+x^{2}\right) d y=0 \tag{5}
\end{equation*}
$$

(iii) Solve

$$
(x+2 y) d x+(2 x+y) d y=0
$$

[5]
(iv) Solve

$$
(3 y-7 x+7) d x+(7 y-3 x+3) d y=0
$$

[5]
(b) Determine the value of a for which the following differential equation is exact: Hence, solve the differential equation.

$$
x y^{3} d x+a x^{2} y^{2} d y=0
$$

[5]
(c) Solve the Bernoulli equation

$$
3 y^{\prime}+x y=x y^{-2} .
$$

(d) Solve

$$
\begin{equation*}
\frac{d^{3} y}{d x^{3}}+\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-y=0 \tag{5}
\end{equation*}
$$

(e) Using Laplace transform method solve

$$
y^{\prime \prime}-2 y^{\prime}-8 y=0, \quad y(0)=3, y^{\prime}(0)=6 .
$$

Question 2

(a) Use the method of variation of parameters to solve

$$
y^{\prime \prime}+3 y^{\prime}+2 y=2 e^{x}
$$

(b) Solve the system of equations

$$
\begin{gathered}
\frac{d x}{d t}-7 x+y=0 \\
\frac{d y}{d t}-2 x-5 y=0
\end{gathered}
$$

Question 3

Find the series solution, about $x=0$, of the equation

$$
x y^{\prime \prime}+y^{\prime}-x y=0
$$

by the Frobenious method.

Question 4

(a) Use the method of undetermined coefficients to find the solution of

$$
y^{\prime \prime}+9 y=\cos 3 x
$$

(b) Using Laplace transform method, solve

$$
y^{\prime \prime}+2 y^{\prime}+5 y=e^{-t} \sin t, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

Question 5

(a) Solve

$$
(x+1) \frac{d y}{d x}-y=e^{3 x}(x+1)^{2}
$$

(b) It is given that $y_{1}=x$ and $y_{2}=\frac{1}{x}$ are two linearly independent solutions of the associated homogeneous equation of

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=x, \quad x \neq 0
$$

Find a particular solution and the general solution of the equation.

Question 6

(a) Solve

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=0, \quad y(1)=0, \quad y^{\prime}(1)=-2
$$

(b) Find the general solution of the differential equation

$$
y^{\prime}=y^{2}+(2 x-1) y+x^{2}-x+1
$$

if $y=x$ is a solution of the differential equation.

Table 1: Table of Laplace Transforms

$f(t)$	$F(s)=\mathcal{L}[f(t)]$
t^{n}	$\frac{n!}{s^{n+1}}$
$\frac{1}{\sqrt{t}}$.	$\sqrt{\frac{\pi}{s}}$
$e^{a t}$	$\frac{1}{s-a}$
$t^{n} e^{a t}$	$\frac{n!}{(s-a)^{n+1}}$
$\frac{1}{a-b}\left(e^{a t}-e^{b t}\right)$	$\frac{1}{(s-a)(s-b)}$
$\frac{1}{a-b}\left(a e^{a t}-b e^{b t}\right)$	$\frac{s}{(s-a)(s-b)}$
$\sin (a t)$	$\frac{a}{s^{2}+a^{2}}$
$\cos (a t)$	$\frac{s}{s^{2}+a^{2}}$
$\sin (a t)-a t \cos (a t)$	$\frac{2 a^{3}}{\left(s^{2}+a^{2}\right)^{2}}$
- $e^{a t} \sin (b t)$	$\frac{b}{(s-a)^{2}+b^{2}}$
$e^{a t} \cos (b t)$	$\frac{s-a}{(s-a)^{2}+b^{2}}$
$\sinh (a t)$	$\frac{a}{s^{2}-a^{2}}$
$\cosh (a t)$	$\frac{s}{s^{2}-a^{2}}$
$\sin (a t) \sinh (a t)$	$\frac{2 a^{2}}{s^{4}+4 a^{4}}$
$\frac{d^{n} f}{d t^{n}}(t)$	$\begin{gathered} s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\cdots-f^{(n-1)}(0) \\ 5 \end{gathered}$
$g(t)= \begin{cases}0, & 0 \leq t \leq a ; \\ f(t-a), & a<t .\end{cases}$	$e^{-a s} F(s)$

