UNIVERSITY OF SWAZILAND

Final Examination, 2016/2017

B.Sc. II, B.Eng II, BASS II, BED. II

Title of Paper : Linear Algebra
Course Number : MAT221/M220
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: NONE
This examination paper should not be opened until permission has been given by the invigilator.

A1. (a) Let $S=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be a subset of a vector space V. Explain precisely what is meant by each of the following statements
(i) S spans V
(ii) S is linearly dependent in V
(iii) S is a basis for V.
(b) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation defined by

$$
T\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
2 x-z \\
x+y-z \\
z
\end{array}\right)
$$

(i) Find the matrix A of T with respect to the standard basis.
(ii) Find the matrix A^{\prime} of T with respect to the basis $B=\left\{\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)\right\}$
(iii) Find a 3×3 transition matrix P
(iv) Show that $A^{\prime}=P A P^{-1}$

A2. (a) Let V be a vector space, A and B be finite sets of non-zero vectors in V such that $A \subset B$ show that
(i) A linearly dependent $\Rightarrow B$ is also linearly dependent
(ii) B is linearly independent $\Rightarrow A$ is also linearly independent
(b) (i) Express A and A^{-1} as a product of elementary matrices where

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \tag{6}\\
1 & 2 & 2 \\
0 & 0 & 3
\end{array}\right)
$$

(ii) Compute the product for A^{-1} and show that A^{-1} is the inverse of A.

QUESTION B3 [20 Marks]

(a) Find the characteristic polynomial, eigenvectors and eigenvalues of the matrix

$$
A=\left(\begin{array}{ccc}
2 & 2 & 3 \tag{14}\\
1 & 2 & 1 \\
2 & -2 & 1
\end{array}\right)
$$

(b) Use Cramer's rule to solve

$$
\left(\begin{array}{lll}
2 & 2 & 1 \tag{6}\\
3 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right)
$$

QUESTION B4 [20 Marks]

(a) Find values of k for which the linear system has
(i) a unique solution
(ii) no solution
(iii) infinitely many solutions

$$
\left(\begin{array}{ccc}
1 & 1 & -1 \tag{10}\\
1 & 2 & -1 \\
1 & 1 & k^{2}-5
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
2 \\
3 \\
k
\end{array}\right)
$$

(b) Find the coordinate vector of $\left(\begin{array}{l}1 \\ 5 \\ 9\end{array}\right)$ with respect to

$$
\left(\begin{array}{l}
1 \tag{6}\\
0 \\
0
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

(c) Find the standard matrix for the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ where $T\binom{x}{y}=$ $\left(\begin{array}{c}x+3 y \\ x \\ 4 x-2 y\end{array}\right)$
(a) Let V be the set of all ordered pairs of real numbers. Define addition and scalar multiplication as follows

$$
\begin{gather*}
\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}+1, y_{1}+y_{2}+1\right) \\
\alpha(x, y)=\left(\alpha x_{1}+\alpha-1, \alpha y_{1}+\alpha-1\right) \tag{10}
\end{gather*}
$$

Show that V is a vector space.
(b) Show that the vector $(4,2,-6)$ is a linear combination of the vectors $(4,2,-3),(2,1,-2)$ and ($-2,-1,0$)
(c) Determine whether the following has a non-trivial solution

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}+x_{4}=0 \\
2 x_{1}+x_{2}-x_{3}+2 x_{4}=0 \\
3 x_{1}+2 x_{2}+2 x_{3}+2 x_{4}=0 \tag{4}
\end{array}
$$

QUESTION B6 [20 Marks]

(a) Determine whether the following mappings are linear transformations
(i) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $T\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\binom{x+y-z}{2 x+y}$
(ii) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T\left(\begin{array}{c}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}x+1-z \\ x+y \\ x+2 y\end{array}\right)$
(b) Prove that the set $B=\left\{x^{2}+1, x-1,2 x+2\right\}$ is a basis for the vector space $V=$ $P_{2}(x)$

QUESTION B7 [20 Marks]

(a) Let $s=\left\{v_{2}, v_{2}, \cdots, v_{n}\right\}$ be a set of non-zero vectors in a vector space V. Prove that s is linearly dependent if and only if one of the vectors v_{j} is a linear combination of the preceeding vectors in s.
(b) Verify the Cayley-Hamilton theorem for the matrix

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \tag{10}\\
0 & 1 & 0 \\
2 & 1 & 2
\end{array}\right)
$$

