University of Swazilland

Supplementary Examination, 2016/2017

B.Sc. II, B.Eng II, BASS II, BED. II

Title of Paper : Linear Algebra
Course Number : M220
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: NONE
This examination paper should not be opened until permisston has been given by the invigilator.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS コマ

A1.
(a) Find conditions on λ and u for which the following system of linear equations has
(i) a unique solution
(ii) no solution
(iii) infinitely many solutions

$$
\begin{array}{r}
x+y+z=0 \\
2 x+3 y+z=1 \\
4 x+7 y+\lambda z=u \tag{1}
\end{array}
$$

(b) Let $T: R^{2} \rightarrow R^{3}$ be given by

$$
T\binom{x}{y}=\left(\begin{array}{c}
x-2 y \\
2 x+y \\
x+y
\end{array}\right)
$$

Find the matrix of T
(i) with respect to the standard basis
(ii) with respect to B^{1} and B where
$B^{1}=\left\{(1,-1)^{T},(0,1)^{T}\right\}$ and $B=\left\{(1,1,0)^{T},(0,1,1)^{T},(1,-1,1)^{T}\right\}$
A2.
(a) Determine whether the following sets of vectors in the vector space $P_{2}(x)$ are linearly dependent. For those that are linearly dependent express the last vector as a linear combination of the rest
(i) $\left\{2 x^{2}+x, x^{2}+3, x\right\}$
(ii) $\left\{2 x^{2}+x+1,3 x^{2}+x-5, x+13\right\}$
(b) Let $S=\left\{\gamma_{1}, \gamma_{2} \cdots, \gamma_{n}\right\}$ be a'set of non-zero vectors in a vector space V. Prove that S is linearly dependent if and only if one of the vectors γ_{j} is linear combination of the proceeding vectors in S.

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3 [20 Marks]

(a) Let V be the set of all ordered pairs of real numbers. Define addition and scalar multiplication as follows
$\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}+1, y_{1}+y_{2}+1\right)$ and $\alpha(x, y)=\left(\alpha x_{1}+\alpha-1, \alpha y_{1}+\alpha-1\right)$
Show that V is a vector space
(b) Find the inverse A^{-1} of the matrix A using the augmented matrix $[A: I]$

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \tag{10}\\
2 & 2 & 1 \\
1 & -1 & 2
\end{array}\right)
$$

(c) Use (b) to find a finite sequence of elementary matrices $E_{1}, E_{2}, \cdots, E_{k}$ such that $E_{k} E_{k-1} \cdots E_{2} E_{1} A=1$

QUESTION B4 [20 Marks]

(a) Show that the vector $(-3,12,12)$ is a linear combination of the vectors $(1,0,2),(0,2,4)$ and $(-1,3,2)$
(b) Show that the set of vectors
$V=\left\{(0,2,1)^{T},(1,0,2)^{T},(1,-1,0)^{T}\right\}$ is basis for R^{3}
(c) Determine whether the following has a non trivial solution

$$
\begin{array}{r}
x_{1}+x_{2}+x_{3}+x_{4}=0 \\
2 x_{1}+x_{2}-x_{3}+2 x_{4}=0 \\
3 x_{1}+2 x_{2}+2 x_{3}+2 x_{4}=0 \tag{4}
\end{array}
$$

(a) Show that each eigen vector of a square matrix A is associated with only one eigenvalue
(b) Show that $A=\left(\begin{array}{ccc}0 & 0 & 5 \\ 0 & 0 & -1 \\ -1 & 1 & 0\end{array}\right)$ is a skew symmetrix
(c) Find the characteristic polynomial, eigen values and eigen vectors of the following matrix

$$
A=\left(\begin{array}{ccc}
2 & 2 & 3 \tag{10}\\
1 & 2 & 1 \\
2 & -2 & 1
\end{array}\right)
$$

QUESTION B6 [20 Marks]

Let $B=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $B^{1}=\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$ be bases in R^{3}, where
$u_{1}=(1,0,0)^{T}, u_{2}=(1,1,0)^{T}, u_{3}=(1,1,1)^{T}$
$\gamma_{1}=(0,2,1)^{T}, \gamma_{2}(1,0,2)^{T}, \gamma_{3}=(1,-1,0)^{T}$
(a) Find the transition matrix from B^{1} to B.
(b) Let $T: R^{3} \rightarrow R^{3}$ be the linear transformation whose matrix with respect to the basis B is

$$
\left(\begin{array}{ccc}
3 & -6 & 9 \tag{2}\\
0 & 3 & -6 \\
0 & 0 & 0
\end{array}\right)
$$

Find the matrix of T w.r.t B^{1}
(c) If $\left(\begin{array}{c}6 \\ -3 \\ 3\end{array}\right)$ is the coordinates relative to B, find the coordinates relative to B^{1}

QUESTION B7 [20 Marks]

(a) Verify Cayley-Hamilton Theorem for the following matrix

$$
A=\left(\begin{array}{ll}
3 & 2 \tag{5}\\
1 & 4
\end{array}\right)
$$

(b) By inspection, find the inverses of the following matrices

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \tag{5}\\
0 & 1 & 0 \\
0 & 0 & -3
\end{array}\right), \quad\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
4 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

(c) Use Crammer's rule to solve

$$
\begin{align*}
2 x_{1}+8 x_{2}+x_{3} & =10 \\
2 x_{3}+3 x_{2}-x_{1} & =-2 \\
4 x_{1}+4 x_{2}-5 x_{3} & =4 \tag{5}
\end{align*}
$$

(c) Show that $2 x^{2}+2 x+3$ is not a linear combination of $x^{2}+2 x+1, \quad x^{2}+3, x-1$

