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1. This paper consists of SIX (6) questions in TWO sections. 

2. Section A is COMPULSORY and is worth 40% Answer ALL• 

questions in this section. 

3. Section B consists of FIVE questions, each worth 20% An• 

swer ANY THREE (3) questions in this section. 

4. Show all your working. 
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and clearly indicate the question number at the top of the 
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SECTION A [40 Marks]: ANSWER ALL QUESTIONS 

QUESTION Al [40 Marks] 

(a) Define each of the following. 

i. A proposition. (2) 

ii. A tautology. (2) 

iii. A relation from a set A into a set B. (2) 

iv. An equivalence relation on a set A. (4) 

v. Afunction from a set A into a set B. (3) 

vi. A one-to-one function f :A -t B. (3) 

(b) 	Consider the statement: 

"If it is raining today, then Sipho is wearing gumboots." 

i. Write down (in English) the inYerse of the statement. 	 (2) 

ii. Write down (in English) the converse of the statement. 	 (2) 

iii. Write down (in English) the contrapositive of the statement. (2) 

(c) State the Generalized Principle of Mathematical Induction. 	 (2) 

(d) Write down the negation of each of the following statements. 

i. (3x E 	JR)(x2 = 2). (2) 

ii. ('t/x 	E Q)(3p E Z)(3q E Z)(x = p/q). (3) 

(e) Show that p 1\ -'(p -t q) - p1\ -'q. 	 (5) 

(f) Consider the following predicates. 

p(x):x>-l 
, q(x) : x E {Of 1,2}. 

Determine the truth values of the following propositions. 

i. p(-1) -t q(l). 	 (2) 

ii. p(l)l\-'p(-l). 	 (2) 

iii. -, (p(2) V q(2)). 	 (2) 

____-----------END OF SECTION A - TURN OVER 
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SECTION B: ANSWER ANY THREE QUESTIONS 


QUESTION B2 [20 Marks] 

(a) Consider the predicate 
p(x,y) : x f:. y. 

Determine the truth values of the following propositions. 

i. (:3x E R) (3y E R)p(x, y). 

ii. (Vx E R)(3y E R)p(x,y). 

iii. (:3x E R)(Vy E R)p(x,y). 

(2) 

(2) 

(2) 

(b) Let p(x, y) and q(x, y) be predicates. Prove 

-'[(Vx)(Vy)(p(x,y) -r q(x,y))] = (3x) (3y)(p(x,y) /\ -'q(x,y)) 

(c) Determine whether the following mgument is valid or invalid. 

(5) 

. 

p-rq 
q-rp 
p V q. 

(5) 

(d) Prove 

(4) 

QUESTION B3• [20 Marks] 

(a) Prove: For every integer x, x2 is even ifand only if x is even. 

(b) Prove: The number viz is irrational. 

(c) Let a f:. 0, b f:. 0 and c be integers. Prove: 

i. If a I b and a I c, then a I (b +c). 

ii. Ifa I band b I c, then a I c. 

(7) 

(7) 

(3) 

(3) 

OVER 
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QUESTION B4 [20 Marks] 

(a) Let A and B be sets in a universal set U. Prove each of the following. 

i. If A C B, then A U B = B 	 (4) 

ii. (A n B) C = A C U BC	 (6)• 

(b) i. Define a partition of a set A. 	 (2) 

ii. 	Let A = {1,2,3,4,5,6}, Al = {1},A2 = {2,3},A3 = {4,5,6}. Show 
that {AI, A21 A3} is a partition of A. (3) 

(c) 	Let B = {1,2} and C = {3,4}. Find 

i. 	Y'(B). ii. Y'(B n C). 
(2,3) 

QUESTION B5 [20 Marks] 

(a) Let X = Z+ be the set of non-negative integers and define a relation R on 
X by mRn if and only if m !n. Prove that R is antisymmetric. (5) 

(b) 	Define a relation "'-' on Z by m "'-' n if and only if m n (mod 2). 

i. Show that "'-' is an equivalence relation on Z. 	 (7) 

ii. List the equivalence classes of Z given by "'-'. 	 (2) 

(c) 	Let J?1 be a collection of sets. Let R be the relation on J?1 defined by 
(A, B) E R if and only if A C B. Show that J?1 with this relation is a 
poset. (6) 

QUESTION B6 [20 Marks]
• 

(a) Let f(n) = 32n + 7. Use mathematical induction to prove that f(n) is 
divisible by 8 for all integers n O. (6) 

(b) 	Use strong induction to prove: Any integer n > 1can be written as a product 
ofprime numbers. (6) 

(b) i. Prove that the composition of two injective functions is also injective. 
(4) 

ii. Prove that the composition of two surjective functions is also surjec
~~ W 

________END OF EXAMINATION PAPER~________ 


