UNIVERSITY OF SWAZILAND

EXAMINATION, 2016/2017

BASS II, B.Ed (Sec.) II, B.Sc. II

- **Title of Paper** : Foundations of Mathematics
- Course Number : MAT231/M231
- **Time Allowed** : Three (3) Hours

Instructions

- 1. This paper consists of SIX (6) questions in TWO sections.
- 2. Section A is **COMPULSORY** and is worth 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1, B2 B6) on a new page and clearly indicate the question number at the top of the page.
- 6. You can answer questions in any order.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PER-MISSION HAS BEEN GIVEN BY THE INVIGILATOR.

ACADEMIC YEAR 2016/20

PAGE 1

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

COURSE NAME AND CODE: MAT231/M231 Foundations of Mathematics

QUESTION A1 [40 Marks]

UNISWA EXAMINATIONS

(a) Define each of the following.

i. A proposition.	(2)
ii. A tautology.	(2)
iii. A <i>relation</i> from a set <i>A</i> into a set <i>B</i> .	(2)
iv. An <i>equivalence relation</i> on a set A.	(4)

- v. A *function* from a set A into a set B. (3)
- vi. A one-to-one function $f : A \to B$. (3)

(b) Consider the statement:

"If it is raining today, then Sipho is wearing gumboots."

- i. Write down (in English) the inverse of the statement. (2)
- ii. Write down (in English) the converse of the statement. (2)
- iii. Write down (in English) the contrapositive of the statement. (2)
- (c) State the Generalized Principle of Mathematical Induction.
- (d) Write down the negation of each of the following statements.
 - i. $(\exists x \in \mathbb{R})(x^2 = 2).$ (2)

ii.
$$(\forall x \in \mathbb{Q})(\exists p \in \mathbb{Z})(\exists q \in \mathbb{Z})(x = p/q).$$
 (3)

- (e) Show that $p \land \neg(p \rightarrow q) \equiv p \land \neg q$.
- (f) Consider the following predicates.
 - p(x): x > -1q(x): x \in \{0, 1, 2\}.

Determine the truth values of the following propositions.

i.	$p(-1) \to q(1). \tag{6}$	2)
ii.	$p(1) \wedge \neg p(-1).$ (6)	2)

iii. $\neg(p(2) \lor q(2)).$ (2)

END OF SECTION A – TURN OVER

82

(2)

(5)

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]

(a) Consider the predicate

$$p(x,y): x \neq y.$$

Determine the truth values of the following propositions.

i.
$$(\exists x \in \mathbb{R})(\exists y \in \mathbb{R})p(x, y).$$
 (2)

ii.
$$(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})p(x, y).$$
 (2)

iii.
$$(\exists x \in \mathbb{R}) (\forall y \in \mathbb{R}) p(x, y).$$
 (2)

(b) Let p(x, y) and q(x, y) be predicates. Prove

$$\neg \left[(\forall x) (\forall y) (p(x,y) \to q(x,y)) \right] \equiv (\exists x) (\exists y) (p(x,y) \land \neg q(x,y))$$
(5)

(c) Determine whether the following argument is valid or invalid.

$$p \to q$$
$$q \to p$$
$$\cdot \quad p \lor q.$$

(5)

(d) Prove

 $p \to q \equiv \neg q \to \neg p.$

(4)

QUESTION B3 [20 Marks]

(a) Prove: For every integer x , x^2 is even if and only if x is even.	(7)
(b) Prove: The number $\sqrt{2}$ is irrational.	(7)
(c) Let $a \neq 0, b \neq 0$ and c be integers. Prove:	
i. If $a \mid b$ and $a \mid c$, then $a \mid (b+c)$.	(3)
ii. If $a \mid b$ and $b \mid c$, then $a \mid c$.	(3)

TURN OVER

Å-

UNISWA EXAMINATIONS

ACADEMIC YEAR 2016/2017

QUESTION B4 [20 Marks]

- (a) Let A and B be sets in a universal set U. Prove each of the following.
 - i. If $A \subseteq B$, then $A \cup B = B$ (4) ii. $(A \cap B)^c = A^c \cup B^c$. (6)
- (b) i. Define a *partition* of a set A. (2)ii. Let $A = \{1, 2, 3, 4, 5, 6\}, A_1 = \{1\}, A_2 = \{2, 3\}, A_3 = \{4, 5, 6\}$. Show that $\{A_1, A_2, A_3\}$ is a partition of A. (3)
- (c) Let $B = \{1, 2\}$ and $C = \{3, 4\}$. Find

i. $\mathcal{P}(B)$. ii. $\mathscr{P}(B \cap C)$. (2,3)

QUESTION B5 [20 Marks]

- (a) Let $X = \mathbb{Z}^+$ be the set of non-negative integers and define a relation R on X by mRn if and only if $m \mid n$. Prove that R is antisymmetric. (5)
- (b) Define a relation \sim on \mathbb{Z} by $m \sim n$ if and only if $m \equiv n \pmod{2}$.
 - i. Show that \sim is an equivalence relation on \mathbb{Z} . (7)
 - ii. List the equivalence classes of \mathbb{Z} given by \sim . (2)
- (c) Let \mathscr{A} be a collection of sets. Let R be the relation on \mathscr{A} defined by $(A, B) \in R$ if and only if $A \subseteq B$. Show that \mathscr{A} with this relation is a poset. (6)

QUESTION B6 [20 Marks]

- (a) Let $f(n) = 3^{2n} + 7$. Use mathematical induction to prove that f(n) is divisible by 8 for all integers $n \ge 0$. (6)
- (b) Use strong induction to prove: Any integer n > 1 can be written as a product of prime numbers. (6)
- i. Prove that the composition of two injective functions is also injective. (b)

(4)

ii. Prove that the composition of two surjective functions is also surjective. (4)