University of Swaziland

Final Examination, December 2017

B.A.S.S., B.Sc, B.Ed

Title of Paper : Dynamics II
Course Number : M355
Time Allowed : Three (3) Hours

Instructions

1. This paper consists of TWO sections.
a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.
b. SECTION B: 60 MARKS

Answer ANY THREE questions.
Submit solutions to ONLY THREE questions in Section B.
2. Each question in Section B is worth 20%.
3. Show all your working.
4. Non programmable calculators may be used (unless otherwise stated).
5. Special requirements: None.

This paper should not be opened until permission has been given BY THE INVIGILATOR.

SECTION A: Answer All Questions

A1. Derive the Lagrangian for the masses of Atwood machine, taking the shorter length of the pulley to be the generalized coordinate.

A2. The Lagrangian function of a system is given by

$$
\frac{1}{2} M \dot{R}^{2}+\frac{1}{2} \mu\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}\right)-\frac{1}{2} k(r-b)^{2} .
$$

(a) Determine the cyclic (ignorable) coordinates and find the generalized momenta conjugate to these coordinates.
(b) Prove that the Hamiltonian of the system is given by

$$
\frac{P_{R}^{2}}{2 M}+\frac{P_{r}^{2}}{2 \mu}+\frac{P_{\theta}^{2}}{2 \mu r^{2}}+\frac{1}{2} k(r-b)^{2} .
$$

(c) Determine Hamilton's equations of motion and prove that the equation of motion corresponding to r is

$$
\mu\left(\dot{r}-r \dot{\theta}^{2}\right)+k(r-b)=0
$$

A3. (a) Evaluate the poison bracket $\left[q^{2} p, q p\right]$.
(b) Using any method you choose, show that the following transformation is canonical

$$
\begin{equation*}
P=\frac{1}{2}\left(p^{2}+q^{2}\right), \quad Q=\arctan \left(\frac{q}{p}\right) \tag{6}
\end{equation*}
$$

A4. Find the extremal of

$$
\begin{equation*}
I=\int_{0}^{1}\left(\left(y^{\prime \prime}\right)^{2}+y^{\prime}+3 x^{2}\right) d x, \quad y(0)=0, \quad y(1)=1, \quad y^{\prime}(0)=1, \quad y^{\prime}(1)=1 \tag{6}
\end{equation*}
$$

SECTION B: Answer Any THREE Questions

B2. (a) Derive the Lagrange equation of motion for the system made up of a simple pendulum for which the pivot point (of negligible mass) is free to move horizontally as shown in Figure 1: Take the horizontal line through $y=0$ as the reference level.

Figure 1: Moving Pivot Pendulum
(b) For a certain mechanical system the kinetic and potential energy are given by

$$
\begin{aligned}
T & =\frac{1}{2}\left\{(1+2 k) \dot{\theta}^{2}+2 \dot{\theta} \dot{\phi}+\dot{\phi}^{2}\right\} \\
V & =\frac{n^{2}}{2}\left\{(1+k) \theta^{2}+\phi^{2}\right\}
\end{aligned}
$$

where θ and ϕ are generalized coordinates and n, k are positive constants. Write down Lagrange's equations of motion and deduce that

$$
(\ddot{\theta}-\ddot{\phi})+n^{2}\left(\frac{1+k}{k}\right)(\theta-\phi)=0
$$

B3. Consider a particle moving on a real line. Let the dynamics of the particle be determined by the Hamiltonian,

$$
H=\frac{q^{4} p^{2}}{2 \mu}+\frac{\lambda}{q^{2}}
$$

where μ and λ are real constants.
(a) Write down the Hamilton's equations of motion for the above system in their simplest form.
(b) Find a Lagrangian for the system and write down the corresponding Lagrange's equation of motion.

B4. (a) Using any method you choose, prove that the following transformation is canonical

$$
Q=q \tan p, \quad P=\ln (\sin p)
$$

(b) Prove that $\frac{d}{d t}[A, B]=[\dot{A}, B]+[A, \dot{B}]$.
(c) Evaluate $\left[A_{1}, A_{2}\right]$ and $\left[A_{1}, A_{3}\right]$ given

$$
A_{1}=\frac{1}{4}\left(x^{2}+p_{x}^{2}-y^{2}-p_{y}^{2}\right), \quad A_{2}=\frac{1}{2}\left(x y+p_{x} p_{y}\right), \quad A_{3}=\frac{1}{2}\left(x p_{y}-y p_{x}\right) .
$$

B5. (a) Find the curve $y(x)$ that minimizes the functional

$$
\int_{0}^{1}\left(y^{\prime 2}+y^{2}+2 y e^{2 x}\right) d x, y(0)=\frac{1}{3}, y(1)=\frac{1}{3} e^{2} .
$$

[10]
(b) Show that Euler-Lagrange equation for the functional

$$
I=\int_{x=a}^{b} y \sqrt{1+\left(y^{\prime}\right)^{2}} d x
$$

is given by

$$
y y^{\prime \prime}=1+\left(y^{\prime}\right)^{2} .
$$

B6. (a) A system of two degrees of freedom is described by the Hamiltonian

$$
H=q_{1} p_{1}-q_{2} p_{2}-a q_{1}^{2}+b q_{2}^{2}
$$

where a and b are constants. Show that $D=q_{1} q_{2}$, is a constant of motion.
(b) Find the function which optimises

$$
\int_{x=1}^{e}\left(4 y+x y^{\prime 2}\right) d x
$$

if $y(e)=0$ and $y(1)$ not prescribed.

