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SECTION A Marks]: ANSWER ALL QUESTIONS 

QUESTION Al [40 Marks] 

Al (a) Write down the normal equations for approximating a function f(x) using 
continuous least squares approximation derived using a general polynomial 

n 

of the form Pn(x) = L akxk 	 [3 marks] 
k=O 

(b) 	 i. Define the Lipschitz condition for solving an initial value 
problem y' f(t, y). [3 marks] 

ii. 	Does the function f(t, y) = Jt2 + y2 satisfy the Lipschitz condition. [7 marks] 

(c) i. 	Derive the Taylor method of order 3 that can be used to solve the IVP [4 marks] 

y' = 2ty, y(O) 2 

ii. 	Use the 3rd order Taylor method with step size h = 0.2 to obtain the 
approximate solution of the IVP at t = 0.4 [4 marks] 

(d) Consider the differential equation 

au a2u 
-a = t a 2 +bux x 

where b is a constant. Discretize the equation using the backward difference 
scheme in time and the central difference scheme in space. [4 marks] 

(e) i. Use the method of undetermined coefficients to derive the following 
2-Step Adams-Bashforth Explicit method [6 marks] 

Yo 0:, Y1 0:1 

Yi+l Yi + ~[3f(ti' Yi) - f(ti .-1 , Yi-l)] 

ii. Investigate the consistency and stability of the 2-stcp Adams-Ba..'lhforth 
method [6 marks] 

(f) Write down an 0(h2) finite difference scheme for the following boundary value 
problem: 

d2u -	 - + c(x)u f(x), o:::; x :::; 1. 
dx2 

u(O) = 0:, u(l) (3 

where c(x) 2': 0, f(x) are given continuous functions in the interval [0,1] and 
0: and (3 are known boundary values of u(x). 	 [3 marks] 
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SECTION B: ANSWER ANY THREE QUESTIONS 


QUESTION B2 [20 Marks] 

B2 (a) 	State the condition(s) that that must be satisfied for a solution of an 
initial value problem to exist. [3 marks] 

(b) 	State the condition(s) that that must be satisfied for a solution of an 
initial value problem to be unique. [3 marks] 

(c) 	What type of initial value problems is well-posed? [3 marks] 

(d) Suppose that the perturbation <5(t) is proportional to t, that is <5(t) = <5t 
for some constant 6. Show directly using the associated perturbed problem 
that the following IVP is well-poised. [11 marks] 

y' = y + 1, 0::; t ::; 1, y (0) 1 

QUESTION B3 [20 Marks] 

B3 (a) Derive the normal equations for continuous least square approximation 
using a linear function ax + b [8 marks] 

(b) Use the normal equations derived in (a) above to find the least squares linear function 
that best fits the curve y J2x + lover the interval 0 ::; x ::; ~. [4 marks] 

(c) Use the Gram-Schmidt process to construct the Legendre polynomials 

<P1 (x), <P2(X) ,<P3(X) 

Here, <Po(x), <PI (x), <P2(X), <P3(X) is an orthogonal set on [-I, r with 

respect to the weight w(x) 1, given that <Po(x) = 1. [8 marks] 


QUESTION B4 [20 Marks] 

B4 (a) Use the Von Neumann analysis to obtain a restriction on the time step size 
that guarantees stability of the finite difference solution, based on forward 
difference in time and central difference in space, for solving the differential 
equation Ut = bux (b> 0 is a constant) [10 marks] 

(b) Consider the boundary value problem 

y" = xy' 3y + ) 0::; x ::; 1 

y(O) = 1, y(l) 2. 

By replacing y' and y" by central difference quotients, show that the general 
discretization on 5 sub-intervals gives the following matrix equation [10 marks] 

-1.88 0.98 -0.9711 ]
1.04 1.88 0.96 00 Y2 0.0597o 1[YI]

o 1.06 -1.88 0.94 Y3 0.0729[ 	 [o 	 o 1.08 -1.88 Y4 -1.7510 
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QUESTION B5 [20 Marks] 

B5 Consider the initial value problem 

y' y - t + 1, Y(0) = 1 

etwith exact solution y(t) + t. Use h 0.1 and the exact solution to get the required 
starting values wherever necessary, to solve the IVP and estimate y(O.2) using 

(a) Taylor method of order 2 [6 marks] 

(b) Runge-Kutta method of order 4 [6 marks] 

(c) Heun's method [6 marks] 

(d) 2-Step Adams-Bashforth Explicit method [2 marks] 

Yo = (X, Yl (Xl 

h 
Yi+l Yi + 2[3!(ti ,Yi) !(ti-l,Yi-d] 

QUESTION B6 [20 Marks] 

B6 Consider the initial value problem 

(a) Derive the local truncation error for the following Adams-Moulton two-step 
method [8 marks] 

Yo = (X, Yl a1 

Yi+l Yi + :; [5!(ti+11 Yi+l) + 8!(ti, Yi) - !(ti - 11 Yi-l)] 

(b) Find the local truncation error for solving the heat equation 

au cPu 
at 

using the forward difference in time and central difference in space. [12 marks] 

END OF EXAMINATION 
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