UNIVERSITY OF SWAZILAND FINAL EXAMINATION, 2017/2018 B.Sc. IV, BASS IV, BED. IV

Title of Paper : Abstract Algebra II

Course Number : M423

Time Allowed : Three (3) Hours

Instructions

- 1. This paper consists of TWO (2) Sections:
 - a. SECTION A (40 MARKS)
 - Answer ALL questions in Section A.
 - b. SECTIÓN B
 - There are FIVE (5) questions in Section B.
 - Each question in Section B is worth 20 Marks.
 - Answer ANY THREE (3) questions in Section B.
 - If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.
- 2. Show all your working.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 MARKS]: ANSWER ALL QUESTIONS

QUESTION A1

- (a) Give an example of a ring satisfying the following given conditions. (Do not prove anything)
 - (i) A ring with zero divisors
 - (ii) A ring without unity
 - (iii) A ring that is not a division ring

(6 marks)

- (b) A ring R is a boolean ring if $a^2 = a \forall a \in R$. Show that every boolean ring is a believe. (6 marks)
- (c) Prove that if D is an integral domain, then D[x] is also an integral domain.

(8 marks)

QUESTION A2

(a) Let R be a commutative ring. Show that

 $Na = \{x \in R: ax = 0\}$ is an ideal of R. (Assume the group properties) (4 marks)

(b) Decide the irreducibility or otherwise of

(i)
$$x^{3} - 7x^{2} + 3x + 3 \in \mathcal{Q}[x]$$

(ii) $8x^{3} + 6x^{2} - 9x + 24 \in \mathcal{Q}[x]$

(8 marks)

4. Ž 20.

 $\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \text{ for } a, b \in F$

is a right ideal but not a left ideal of $M_2(F)$ (8 marks)

2

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3

- (a) Describe al units in each of the following rings:
 - (i) \mathbb{Z}_7 (ii) $\mathbb{Z} \times \mathbb{Q} \times \mathbb{Z}$. (4 marks)
- (b) Write $x^3 + 3x^2 + 3x + 4 \in Z_5[x]$ as a product of irreducible polynomials (6 marks)
- (c) State the Eisentein irreducibility criterion and use it to prove that if p is prime, then the cyclotomic polynomial

$$f(x) = \frac{x^p - 1}{x - 1}$$

is irreducible.

(10 marks)

- Use Fermat's theorem to compute the remainder when 8^{103} is divided by 13. (a) (5 marks)
- Prove that every finite integral domain is a field. (5 marks) (b) Show that the mapping $\phi: \not t \to \mathcal{N}$ given by
- (C)

$$(a+ib)\phi = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} a, b \in \mathbb{R}$$

is a ring homorphism. Find its kernel.

(6 marks)

i de la tractica

(d) State Kroneckers theorem. (Do not prove)

(4 marks)

- (a) Show that $1 + x + x^2 \in \mathbb{Z}_2[x]$ is an irreducible polynomial over \mathbb{Z}_2 . List all the four elements of the field $\mathbb{Z}_2[x]/\langle 1 + x + x^2 \rangle$ in the form $a + b\alpha$ with $a, b \in \mathbb{Z}_2$, where α is a root of $1 + x + x^2$ in the extension field of $\mathbb{Z}_2[x]$. Construct Caley tables for addition and multiplication, showing all computations. (10 marks)
- (b) For each of the given algebraic numbers $\alpha \in \mathcal{C}$ find $irr(\alpha, \mathcal{Q})$ and $deg(\mathcal{Q})$.

(i)
$$\sqrt{3-\sqrt{6}}$$
. (3 marks)
(i) $\sqrt{\frac{1}{3}+\sqrt{7}}$. (4 marks)
(ii) $\sqrt{2}+i$. (3 marks)

(a) Given that every element β of $E = F(\alpha)$ can be uniquely expressed in the form

 $\beta = b_0 + b_1 \alpha + b_2 \alpha^2 + \dots + b_{n-1} \alpha^{n-1}$

where each of $b_i \in F$, α algebraic over the field F and $deg(\alpha, F) = n \ge 1$. Show that if F is finite with q elements, then $E = F(\alpha)$ has q^n elements. (6 marks)

- (b) Prove that every finite integral domain is a field. (6 marks)
- (c) Find the greatest common divisor d(x) of the polynomials:

 $f(x) = x^{4} + 4x^{3} + 7x^{2} + 6x + 2 \text{ and}$ $g(x) = x^{3} + 4x^{2} + 7x + 4 \text{ over } \mathcal{Q} \text{ and express } d(x) \text{ as a linear}$ combination of f(x) and g(x)

(a) Prove that if R is a ring with unity and N is an ideal of R containing a unit, then N = R. (6 marks)

(b) Find all ideals and maximal ideals \mathbb{Z}_{18} . (4 marks)

- (c) In a ring \mathbb{Z}_n show that
 - (i) divisors of zero are those elements that are NOT relatively prime to n. (5 marks)
 - (ii) elements that are relatively prime to n cannot be zero divisors. (5 marks)