UNIVERSITY OF SWAZILAND

FINAL EXAMINATION, 2017/2018
B.Sc. IV, BASS IV, BED. IV

Title of Paper	$:$	Abstract Algebra II.
Course Number	$:$	M423
Time Allowed	$:$	Three (3) Hours
Instructions		

1. This paper consists of TWO (2) Sections:
a. SECTION A (40 MARKS)

- Answer ALL questions in Section A.
b. SECTION B
- There are FIVE (5) questions in Section B.
- Each question in Section B is worth 20 Marks.
- Answer ANY THREE (3) questions in Section B.
- If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.

2. Show all your working.

Special Requirements: NONE
This examination paper should not be opened until permission has been GIVEN BY THE INVIGILATOR.

SECTION A [40 MARKS]: ANSWER ALL QUESTIONS

QUESTION A1

(a) Give an example of a ring satisfying the following given conditions. (Do not prove anything)
(I) A ring with zero divisors
(ii) A ring without unity
(iii) A ring that is not a division ring
(6 marks)
(b) A ring R is a boolean ring if $a^{2}=a \forall a \in R$. Show that every boolean ring is abeliain.
(6 marks)
(c) Prove that if D is an integral domain, then $D[x]$ is also an integral domain.
(8 marks)

QUESTIONA2

(a) Let R be a commutative ring. Show that

$$
N a=\{x \in R: a x=0\}
$$

is an ideal of R. (Assume the group properties)
(4 marks)
(b) Decide the irreducibility or otherwise of
(i) $x^{3}-7 x^{2}+3 x+3 \in Q[x]$
(ii) $8 x^{3}+6 x^{2}-9 x+24 \in \ell[x]$
(8 marks)
(c) Show that for a field F, the set of matrices of the form

$$
\left(\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right) \text { for } a, b \in F
$$

is a right ideal but not a left ideal of $M_{2}(F)$
(8 marks)

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3

(a) Describe al units in each of the following rings:
(i) $\quad Z_{7}$
(ii) $\mathbb{Z} \times \emptyset \times \mathscr{Z}$.
(4 marks)
(b) Write $x^{3}+3 x^{2}+3 x+4 \in Z_{5}[x]$ as a product of irreducible polynomials (6 marks)
(c) State the Eisentein irreducibility criterion and use it to prove that if p is prime, then the cyclotomic polynomial

$$
f(x)=\frac{x^{p}-1}{x-1}
$$

is irreducible.
(10 marks)

QUESTION B4

(a) Use Fermat's theorem to compute the remainder when 8^{103} is divided by 13. (5 marks)
(b) Prove that every finite integral domain is a field.
(5 marks)

$$
M_{2}(\mathbb{R})
$$

(c) Show that the mapping $\phi: \phi \rightarrow \underset{\sim}{\sim}$ given by

$$
(a+i b) \phi=\left(\begin{array}{ll}
a & b \\
-b & a
\end{array}\right) a, b \in R
$$

is a ring homorphism. Find its kernel.
(6 marks)
(d) State Kroneckers theorem. (Do not prove)
(4 marks)

QUESTION B5

(a) Show that $1+x+x^{2} \in \mathbb{Z}_{2}[x]$ is an irreducible polynomial over \mathbb{Z}_{2}. List all the four elements of the field $Z_{2}[x] /<1+x+x^{2}>$ in the form $a+b \alpha$ with $a, b \in \mathbb{Z}_{2}$, where α is a root of $1+x+x^{2}$ in the extension field of $\mathbb{Z}_{2}[x]$. Construct Caley tables for addition and multiplication, showing all computations.
(10 marks)
(b) For each of the given algebraic numbers $\alpha \in \mathscr{C}$ find $\operatorname{irr}(\alpha, Q)$ and $\operatorname{deg}(Q)$.
(i) $\sqrt{3-\sqrt{6}}$.
(3 marks)
(ii) $\sqrt{\frac{1}{3}+\sqrt{7}}$.
(4 marks)
(iii) $\sqrt{2}+i$.
(3 marks)

QUESTION B6

(a) Given that every element β of $E=F(\alpha)$ can be uniquely expressed in the form

$$
\beta=b_{0}+b_{1} \alpha+b_{2} \alpha^{2}+\ldots+b_{n-1} \alpha^{n-1}
$$

where each of $b_{i} \in F, \alpha$ algebraic over the field F and $\operatorname{deg}(\alpha, F)=n \geq 1$. Show that if F is finite with q elements, then $E=F(\alpha)$ has q^{n} elements. (6 marks)
(b) Prove that every finite integral domain is a field.
(c) Find the greatest common divisor $d(x)$ of the polynomials:

$$
\begin{aligned}
& f(x)=x^{4}+4 x^{3}+7 x^{2}+6 x+2 \text { and } \\
& g(x)=x^{3}+4 x^{2}+7 x+4 \text { over } Q \text { and express } d(x) \text { as a linear } \\
& \text { combination of } f(x) \text { and } g(x)
\end{aligned}
$$

QUESTION B7

(a) Prove that if R is a ring with unity and N is an ideal of R containing a unit, then $N=R$.
(6 marks)
(b) Find all ideals and maximal ideals Z_{18}.
(4 marks)
(c) In a ring \mathbb{Z}_{n} show that
(i) divisors of zero are those elements that are NOT relatively prime to n.
(5 marks)
(ii) elements that are relatively prime to n cannot be zero divisors.
(5 marks)

